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Two-player games

Example

0 1 2 3

4 5 6 7

Setting

We consider:
Finite graphs, a set of colors C, and a mapping from edges to colors.

Two players, Max (circle) and Min (square).

A preference relation v (total preorder) over Cω for Max.

Inverse relation v−1 for Min.
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Controller synthesis

Example

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

v: visit 3 at least once

Controller synthesis

Design an optimal strategy for Max w.r.t. the preference relation v.
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Simple controller

Example

0 1 2 3

4 5 6 7

v: visit 3 at least once

Strategy for Max

3 7→ 3; 7 7→ 3; 6 7→ 7.
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Complex controller

Example

0 1 2

v: infinitely often 2 and infinitely often 0

Strategy for Max

0 1 7→ 2; 2 1 7→ 0.
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Very complex controller

Example

a b

-1

0

0

v: infinitely often b and lim inf of the average is ≥ 0

Strategy for Max

0 7→ 0; 0 0 7→ 1; 0 0 1 7→ 0; 0 0 1 0 7→ 0;

0 0 1 0 0 7→ 0; 0 0 1 0 0 0 7→ 0; 0 0 1 0 0 0 0 7→ 1; 0 0 1 0 0 0 0 1 7→ 0;

. . . . . . . . . . . .
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Very complex controller

Example
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Recap

Controller synthesis

Design an optimal strategy for Max w.r.t. the preference relation v.

Simple Controller

Decision making depends on the current state; memoryless strategies.

Complex Controller

Decision making depends on a bounded history; finite memory strategies.

Very complex Controller

Decision making depends on the full history; infinite memory strategies.
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Memoryless determinacy

Definition

Both players can play optimally using memoryless strategies w.r.t v and v−1.

Natural question

Can we characterize memoryless determinacy?

GZ-Criterion

In 2005, Gimbert & Zielonka characterize the preference relations for which memoryless
optimal strategies exist for both players.

Monotony

. . .

@

. . .

w′, 6→w

. . .

A

. . .

Selectivity

. . .

. . .

6@ . . .
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Furthermore

Lifting corollary (Gimbert, Zielonka’05)

Let v be a preference relation, assume that:
i. In all Max-arenas memoryless optimal strategies exist.

ii. In all Min-arenas memoryless optimal strategies exist (w.r.t. v−1).

Then, both players have memoryless optimal strategies in all two-player arenas.

Remark

Establishing i. and ii. is usually “easy”.

Our hope

Extends all of the above to finite memory determinacy.
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Finite memory determinacy

Definition

v is finite memory determined if finite memory optimal strategies suffice for both players.

Example

a b

-1

1

1 -1

i. The running sum of weights grows up to infinity or,

ii. the running sum of weights takes value zero infinitely often.

Max needs infinite memory to play optimally.

In both the one-player versions finite memory optimal strategies exist.
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Arena dependent V.S Arena independent finite memory

ADFM

0 1 2-1

1

-1

10

The running sum of weights grows up to
infinity or,

the running sum of weights takes value zero
infinitely often.

AIFM

0 1 2

Infinitely often 2 and
infinitely often 0.

Our contribution

A characterization of the arena independent finite memory determined preference relations.
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Arena independent finite memory

Memory structure

An automaton-like formalism that given a color and a memory state, updates to the new
memory state.

Example

0 1 2

c0 c1

c2c3

0 2

c0

c2

¬c0 ¬c2

M-Monotony

. . .

@

. . .

w′, 6→w

. . .

A

. . .

w and w′ lead to the same memory state

M-Selectivity

. . .

. . .

6@ . . .

Interleaving modulo memory states
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Results

Theorem (Bouyer, Le Roux, O., Randour, Vandenhove’20)

Let v be a preference relation and let M be a memory structure, then both players have
optimal arena independant finite memory strategies based on a memory structure M in all
games if and only if v and v−1 are M-monotone and M-selective.

Corollary

Let v be a preference relation, assume that:
i. In all Max-arena arena independent finite memory optimal strategies exist.

ii. In all Min-arenas arena independent finite memory optimal strategies exist (w.r.t. v−1) .

Then, both players have arena independent finite memory optimal strategies in all two-player
arenas.

Remark

The memory structure in the two-player case is the product of the memory structure in the
one-player case.
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Comments

From finite memory to M-monotone and M-selective

Follows the steps of Gimbert & Zielonka’s proof.

From M-monotone and M-selective to finite memory

Requires the notion of covered arenas.

Example

0 1 2

v: 1 and 2 infinitely often.

Crucial steps
i. If v is M-monotone and M-selective, then for any arena A, A×M is a covered arena.

ii. In covered arenas it is possible to play optimally with memoryless strategies.
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Conclusion

Results
Characterization of AIFM-determinacy.

A lifting corollary in the context of AIFM-optimal strategies.

Future directions
Characterization of ADFM-determinacy.

More general arenas e.g., stochastic games.
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