Playing optimally using memory

Youssouf Oualhadj¹ Based on joint work with:

Patricia Bouyer², Stéphane Le Roux², Mickael Randour³, Pierre Vandenhove^{2,3}

February 2nd, 2021

LACL – Université Paris Est Créteil, Créteil, France
LSV – CNRS & ENS Paris-Saclay, Université Paris-Saclay, Saint-Aubin, France
F.R.S.-FNRS & UMONS – Université de Mons, Mons, Belgium

Two-player games

Example

Setting

.

We consider:

- $\bullet\,$ Finite graphs, a set of colors C, and a mapping from edges to colors.
- $\bullet\,$ Two players, Max (circle) and Min (square).
- A preference relation \sqsubseteq (total preorder) over C^ω for Max.
- Inverse relation \sqsubseteq^{-1} for Min.

Controller synthesis

Example

.

 \sqsubseteq : visit 3 at least once

Controller synthesis

Example

 \sqsubseteq : visit 3 at least once

Controller synthesis

Example

 \sqsubseteq : visit 3 at least once

Controller synthesis

.

Design *an optimal* strategy for Max w.r.t. the preference relation \sqsubseteq .

Simple controller

Example

.

 \sqsubseteq : visit 3 at least once

Simple controller

Example

 \sqsubseteq : visit 3 at least once

Strategy for Max

.

 $3\mapsto 3; 7\mapsto 3; 6\mapsto 7.$

Complex controller

.

 \sqsubseteq : infinitely often 2 and infinitely often 0

Complex controller

 \sqsubseteq : infinitely often 2 and infinitely often 0

Strategy for Max

.

 $0 \ 1 \mapsto 2; \ 2 \ 1 \mapsto 0.$

Very complex controller

Example

 \sqsubseteq : infinitely often *b* and limit of the average is ≥ 0

Very complex controller

Example

\sqsubseteq : infinitely often *b* and limit of the average is ≥ 0

Strategy for Max			
$0\mapsto 0;$	$0 \ 0 \mapsto 1;$	$0 \ 0 \ 1 \mapsto 0;$	$0 \ 0 \ 1 \ 0 \mapsto 0;$
$0 \ 0 \ 1 \ 0 \ 0 \mapsto 0;$	$0 \ 0 \ 1 \ 0 \ 0 \ 0 \mapsto 0;$	$0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \mapsto 1;$	$0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \mapsto 0;$

Recap

Controller synthesis

Design *an optimal* strategy for Max w.r.t. the preference relation \sqsubseteq .

Simple Controller

Decision making depends on the current state; *memoryless* strategies.

Complex Controller

Decision making depends on a bounded history; *finite memory* strategies.

Very complex Controller

Decision making depends on the full history; *infinite memory* strategies.

Definition

Both players can play *optimally* using *memoryless* strategies w.r.t \sqsubseteq and \sqsubseteq^{-1} .

Definition

Both players can play *optimally* using *memoryless* strategies w.r.t \sqsubseteq and \sqsubseteq^{-1} .

Natural question

Can we *characterize* memoryless determinacy?

Definition

Both players can play *optimally* using *memoryless* strategies w.r.t \sqsubseteq and \sqsubseteq^{-1} .

Natural question

Can we *characterize* memoryless determinacy?

 $\operatorname{GZ-Criterion}$

In 2005, Gimbert & Zielonka characterize the preference relations for which memoryless *optimal strategies* exist for both players.

Definition

Both players can play *optimally* using *memoryless* strategies w.r.t \sqsubseteq and \sqsubseteq^{-1} .

Natural question

Can we *characterize* memoryless determinacy?

 $\operatorname{GZ-Criterion}$

In 2005, Gimbert & Zielonka characterize the preference relations for which memoryless *optimal strategies* exist for both players.

Furthermore

Lifting corollary (Gimbert, Zielonka'05)

Let \sqsubseteq be a preference relation, assume that:

- $i. \ {\rm In} \ all \ {\sf Max-} are nas \ {\rm memoryless} \ {\rm optimal \ strategies} \ {\rm exist.}$
- *ii*. In *all* Min-*arenas* memoryless optimal strategies exist (w.r.t. \sqsubseteq^{-1}).

Then, both players have memoryless optimal strategies in all two-player arenas.

Remark

Establishing i. and ii. is usually "easy".

Our hope

Extends all of the above to *finite memory determinacy*.

Definition

 \sqsubseteq is *finite memory determined* if finite memory optimal strategies suffice for both players.

Definition

 \sqsubseteq is *finite memory determined* if finite memory optimal strategies suffice for both players.

Example

 $i. \ \mbox{The running sum of weights grows up to infinity or,}$

 $ii.\,$ the running sum of weights takes value zero infinitely often.

Definition

 \sqsubseteq is *finite memory determined* if finite memory optimal strategies suffice for both players.

Example

i. The running sum of weights grows up to infinity or,

ii. the running sum of weights takes value zero infinitely often.

• Max needs *infinite memory* to play optimally.

Definition

 \sqsubseteq is *finite memory determined* if finite memory optimal strategies suffice for both players.

Example

i. The running sum of weights grows up to infinity or,

 $ii.\,$ the running sum of weights takes value zero infinitely often.

- Max needs *infinite memory* to play optimally.
- In both the one-player versions *finite memory* optimal strategies exist.

Arena dependent V.S Arena independent finite memory

Arena dependent V.S Arena independent finite memory

Our contribution

A characterization of the *arena independent* finite memory determined preference relations.

Arena independent finite memory

Memory structure

An automaton-like formalism that given a color and a memory state, updates to the new memory state.

Arena independent finite memory

Memory structure

An automaton-like formalism that given a color and a memory state, updates to the new memory state.

Example

Arena independent finite memory

Memory structure

An automaton-like formalism that given a color and a memory state, updates to the new memory state.

 $\mathcal{M} ext{-} ext{Selectivity}$

 $\neg c_0$

 c_0

 C_2

.

 $\neg c_2$

2

Results

Theorem (Bouyer, Le Roux, O., Randour, Vandenhove'20)

Let \sqsubseteq be a preference relation and let \mathcal{M} be a memory structure, then both players have optimal arena independent finite memory strategies based on a memory structure \mathcal{M} in all games if and only if \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective.

Results

Theorem (Bouyer, Le Roux, O., Randour, Vandenhove'20)

Let \sqsubseteq be a preference relation and let \mathcal{M} be a memory structure, then both players have optimal arena independent finite memory strategies based on a memory structure \mathcal{M} in all games if and only if \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective.

Corollary

Let \sqsubseteq be a preference relation, assume that:

i. In *all* Max-*arena* arena independent finite memory optimal strategies exist.

ii. In *all* Min-*arenas* arena independent finite memory optimal strategies exist (w.r.t. \sqsubseteq^{-1}).

Then, both players have arena independent finite memory optimal strategies in *all two-player arenas*.

Results

Theorem (Bouyer, Le Roux, O., Randour, Vandenhove'20)

Let \sqsubseteq be a preference relation and let \mathcal{M} be a memory structure, then both players have optimal arena independent finite memory strategies based on a memory structure \mathcal{M} in all games if and only if \sqsubseteq and \sqsubseteq^{-1} are \mathcal{M} -monotone and \mathcal{M} -selective.

Corollary

Let \sqsubseteq be a preference relation, assume that:

i. In *all* Max-*arena* arena independent finite memory optimal strategies exist.

ii. In *all* Min-*arenas* arena independent finite memory optimal strategies exist (w.r.t. \sqsubseteq^{-1}).

Then, both players have arena independent finite memory optimal strategies in *all two-player arenas*.

Remark

The memory structure in the two-player case is the product of the memory structure in the one-player case.

From finite memory to $\mathcal M\text{-}\mathrm{monotone}$ and $\mathcal M\text{-}\mathrm{selective}$

Follows the steps of Gimbert & Zielonka's proof.

From finite memory to $\mathcal M\text{-}\mathrm{monotone}$ and $\mathcal M\text{-}\mathrm{selective}$

Follows the steps of Gimbert & Zielonka's proof.

From \mathcal{M} -monotone and \mathcal{M} -selective to finite memory

Requires the notion of *covered arenas*.

From finite memory to $\mathcal M\text{-}\mathrm{monotone}$ and $\mathcal M\text{-}\mathrm{selective}$

Follows the steps of Gimbert & Zielonka's proof.

From \mathcal{M} -monotone and \mathcal{M} -selective to finite memory

Requires the notion of *covered arenas*.

Example

 $\sqsubseteq:$ 1 and 2 infinitely often.

From finite memory to $\mathcal M\text{-}\mathrm{monotone}$ and $\mathcal M\text{-}\mathrm{selective}$

Follows the steps of Gimbert & Zielonka's proof.

From \mathcal{M} -monotone and \mathcal{M} -selective to finite memory

Requires the notion of *covered arenas*.

Example

 \sqsubseteq : 1 and 2 infinitely often.

Crucial steps

- *i.* If \sqsubseteq is \mathcal{M} -monotone and \mathcal{M} -selective, then for any arena $\mathcal{A}, \mathcal{A} \times \mathcal{M}$ is a *covered* arena.
- *ii*. In *covered* arenas it is possible to play optimally with memoryless strategies.

Conclusion

Results

- Characterization of ${\it AIFM}\mbox{-}determinacy.$
- A lifting corollary in the context of ${\it AIFM}\xspace$ optimal strategies.

Future directions

- Characterization of ${\it ADFM}$ -determinacy.
- More general arenas e.g., *stochastic games*.