Parameterized Complexity of Party Nominations

Neeldhara Misra, IIT Gandhinagar

ReLaX
 Research Lab in
 Computer Science

 Norkshop on Ganes

 Norkshop on Ganes
 Chennai Mathematical Institute

Confilitios

Condilutios

Votes

Condilutios

Votes

Candilates

Votes

Cunfilitites

The candidates are partitioned into "parties".

Condilates

Every party nominates a candidate.

Candilates

Every party nominates a candidate.

Confilitites

Every party nominates a candidate.

$$
\begin{aligned}
& \text { Votes } \\
& \text { (z) } x
\end{aligned}
$$

The votes are "projected" on the nominees.

Confilitites

Every party nominates a candidate.

The winner is declared based on the plurality voting rule.

The Problem

Assuming complete knowledge about the votes, how do parties select their nominees?

An Example

Cuntibites
 (

Votes

An Example

Votes

An Example

Votes

The Problem

Assuming complete knowledge about the votes, how do parties select their nominees?

The Problem

Assuming complete knowledge about the votes, how do parties select their nominees?

What do the parties know about other nominees?

-•••••••••••••••

- • • • • • • • • • • • • •
- •••••••••••••••
- ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
- •••••••••••••••
-

If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party.

-
If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party.

-

-
If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party. \bigcirc

If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party. \bigcirc

A MORE NATURAL SCENARIO

We have no idea who the other nominees are.

A MORE NATURAL SCENARIO

We have no idea who the other nominees are.

The Optimist’s Question

Do we have a superstar candidate who ensures a party win, irrespective of who is nominated from the other parties?

A MORE NATURAL SCENARIO

We have no idea who the other nominees are.

The Optimist’s Question

Do we have a superstar candidate who ensures a party win, irrespective of who is nominated from the other parties?

The Pessimist’s Question

Do we have a promising candidate who makes the party win in at least one of the many possible parallel universes?

A MORE NATURAL SCENARIO

We have no idea who the other nominees are.

Necessary President

Do we have a superstar candidate who ensures a party win, irrespective of who is nominated from the other parties?

The Pessimist's Question

Do we have a promising candidate who makes the party win in at least one of the many possible parallel universes?

A MORE NATURAL SCENARIO

We have no idea who the other nominees are.

Necessary President

Do we have a superstar candidate who ensures a party win, irrespective of who is nominated from the other parties?

Possible President

Do we have a promising candidate who makes the party win in at least one of the many possible parallel universes?

Known Results

Necessary President

Do we have a superstar candidate who ensures a party win, irrespective of who is nominated from the other parties?

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot.
How hard is it for a party to nominate an election winner? AAAI 2016

Known Results

Necessary President

Do we have a superstar candidate who ensures a party win, irrespective of who is nominated from the other parties?
co-NP complete even when the size of the largest party is two.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot.
How hard is it for a party to nominate an election winner? AAAI 2016

Known Results

Necessary President

Do we have a superstar candidate who ensures a party win, irrespective of who is nominated from the other parties?
co-NP complete even when the size of the largest party is two. polynomial-time when the profiles are single-peaked.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

Known Results

Possible President

Do we have a promising candidate who makes the party win in at least one of the many possible parallel universes?

Known Results

Possible President

Do we have a promising candidate who makes the party win in at least one of the many possible parallel universes?

NP-complete even when the size of the largest party is two.

Known Results

Possible President

Do we have a promising candidate who makes the party win in at least one of the many possible parallel universes?

NP-complete even when the size of the largest party is two.
NP-complete also when the profiles are 1D-Euclidean.

Known Results

Possible President

Do we have a promising candidate who makes the party win in at least one of the many possible parallel universes?

NP-complete even when the size of the largest party is two.
NP-complete also when the profiles are 1D-Euclidean.
(a subclass of single-peaked \& single-crossing profiles)

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

This Talk

This Talk

Possible President

This Talk

Possible President

NP-complete even when the size of the largest party is two. NP-complete also when the profiles are 1D-Euclidean.

This Talk

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

This Talk

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.
(A stronger hardness result.)

This Talk

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.
(A stronger hardness result.)

XP and W[2]-hard parameterized by the number of parties.

This Talk

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.
(A stronger hardness result.)

XP and W[2]-hard parameterized by the number of parties.
FPT parameterized by number of parties on 1D-Euclidean profiles.

This Talk

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.
(A stronger hardness result.)

XP and W[2]-hard parameterized by the number of parties.
FPT parameterized by number of parties on 1D-Euclidean profiles.
(Parameterized Results)

This Talk

Necessary President

This Talk

Necessary President

co-NP complete even when the size of the largest party is two. polynomial-time when the profiles are single-peaked.

This Talk

Necessary President

co-NP complete even when the size of the largest party is two. polynomial-time when the profiles are single-peaked.
polynomial-time when the profiles are single-crossing.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

Talk Outline

Introduction

Preliminaries

High-level methodology

W[2]-hardness parameterized by \#parties

Open Problems

Talk Outline

Introduction

Preliminaries

High-level methodology
W[2]-hardness parameterized by \#parties

Open Problems

The Parameterized Paradicm BeyonelWarst-Case

Classical complexity: measure the performance of an algorithm as a function of the input size.

The Parameterized Paradicm BeyonelWarst-Case

Parameterized complexity: acknowledge the presence of additional structure, which manifests as a secondary measurement - a parameter.

The Parameterized Paradicm BeyonelWarst-Case

Parameterized complexity: acknowledge the presence of additional structure, which manifests as a secondary measurement - a parameter.
© Design algorithms that restrict the combinatorial explosion to a function of the parameter.

The Parameterized Paradicm
 Begone Warst-Case

Parameterized complexity: acknowledge the presence of additional structure, which manifests as a secondary measurement - a parameter.
© ${ }^{*}$ Design algorithms that restrict the combinatorial explosion to a function of the parameter.

Parameter

> fixed-parameter tractability

The Parameterized Paradigm

BejoulW-arst-Case

!. W-hardness: a framework for arguing the likely non-existence of FPT algorithms for parameterized problems

Parameter

fixed-parameter tractability

The Parameterized Paradicm
 BeyonelWarst-Case

!. W-hardness: a framework for arguing the likely non-existence of FPT algorithms for parameterized problems

The Parameterized Paradicm
 Beyone Werst-Case

!. W-hardness: a framework for arguing the likely non-existence of FPT algorithms for parameterized problems

Runs in FPT time • Preserves the parameter • Maintains equivalence

Talk Outline

Introduction
Preliminaries

High-level methodology
W[2]-hardness parameterized by \#parties
Open Problems

High Level Methodology

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

XP and W[2]-hard parameterized by the number of parties. FPT parameterized by number of parties on 1D-Euclidean profiles.

High Level Methodology

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

XP and W[2]-hard parameterized by the number of parties. FPT parameterized by number of parties on 1D-Euclidean profiles.

Reduction from "Linear" SAT aka LSAT
(a structured variation of SAT, originally used in the context of geometric problems*)

[^0]
High Level Methodology

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

XP and W[2]-hard parameterized by the number of parties. FPT parameterized by number of parties on 1D-Euclidean profiles.

Brute-force
(guess the nominee from each party)

High Level Methodology

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

XP and W[2]-hard parameterized by the number of parties. FPT parameterized by number of parties on 1D-Euclidean profiles.

FPT-reduction
(from a variant of Dominating Set, also coming up in this talk)

high Level Methodology

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

XP and W [2]-hard parameterized by the number of parties.
FPT parameterized by number of parties on 1D-Euclidean profiles.

Dynamic Programming (updates along the 1D-Euclidean axis, also appeals to "SP and SC aspects" of 1D-Euclidean profiles)

High Level Methodology

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

XP and W[2]-hard parameterized by the number of parties. FPT parameterized by number of parties on 1D-Euclidean profiles.

Necessary President

polynomial-time when the profiles are single-crossing.

High Level Methodology

Possible President

NP-complete even when the size of the largest party is two, and the profiles are 1D-Euclidean.

XP and $\mathrm{W}[2]$-hard parameterized by the number of parties. FPT parameterized by number of parties on 1D-Euclidean profiles.

Necessary President

polynomial-time when the profiles are single-crossing.

Adversarial approach: guess a nominee + a rival candidate (use a "block property" and reduce to a structured Hitting Set instance)

Talk Outline

Introduction

Preliminaries
High-level methodology
W[2]-hardness parameterized by \#parties
Open Problems

Colourful Red-Blue Dominating Set

- hard parameterized by the "solution size"

$\bigcirc \quad 0 \quad 0$

Colourful Red-Blue Dominating Set

- hard parameterized by the "solution size"

$\bigcirc \quad 0 \quad 0$

Colourful Red-Blue Dominating Set

- hard parameterized by the "solution size"

$\bigcirc \quad 0 \quad 0$

Colourful Red-Blue Dominating Set

- hard parameterized by the "solution size"

$\bigcirc \quad 0 \quad 0$

Colourful Red-Blue Dominating Set

- hard parameterized by the "solution size"

$\bigcirc \quad 0 \quad 0$

Colourful Red-Blue Dominating Set

- hard parameterized by the "solution size"

$\bigcirc \quad 0 \quad 0$

W[2]-hardness of Possible President (parameterized by \#parties)

W[2]-hardness of Possible President (parameterized by \#parties)

Introduce a candidate for every red vertex; and two special candidates p and q .

W[2]-hardness of Possible President (parameterized by \#parties)

Introduce a candidate for every red vertex; and two special candidates p and q .

Parties. p,q are singletons.
The other parties correspond to color classes of the CRBDS instance.

W[2]-hardness of Possible President (parameterized by \#parties)

Introduce a vote for every blue vertex with the ordering:
non-neighbours

$$
v_{\mathrm{k}}: \overrightarrow{S_{\mathrm{k}}} \succ q \succ \overrightarrow{\mathrm{C} \backslash \mathrm{~S}_{\mathrm{k}}} \succ p .
$$

neighbours

W[2]-hardness of Possible President (parameterized by \#parties)

W[2]-hardness of Possible President (parameterized by \#parties)

Also introduce n copies of two special votes:

W[2]-hardness of Possible President (parameterized by \#parties)

Also introduce n copies of two special votes:

$$
\mathrm{g}_{p}: p \succ q \succ \overrightarrow{\mathrm{C}} \text { and } \mathrm{g}_{q}: q \succ p \succ \overrightarrow{\mathrm{C}}
$$

W[2]-hardness of Possible President (parameterized by \#parties)

Also introduce n copies of two special votes:

$$
\mathrm{g}_{p}: p \succ q \succ \overrightarrow{\mathrm{C}} \text { and } \mathrm{g}_{q}: q \succ p \succ \overrightarrow{\mathrm{C}}
$$

Ask if p is a possible president.

W[2]-hardness of Possible President (parameterized by \#parties)

Also introduce n copies of two special votes:

$$
\mathrm{g}_{p}: p \succ q \succ \overrightarrow{\mathrm{C}} \text { and } \mathrm{g}_{q}: q \succ p \succ \overrightarrow{\mathrm{C}}
$$

Ask if p is a possible president.

Answer: YEs if and only if the "other nominees" correspond to a colourful red-blue dominating set.

W[2]-hardness of Possible President (parameterized by \#parties)

Also introduce n copies of two special votes:

$$
\mathrm{g}_{p}: p \succ q \succ \overrightarrow{\mathrm{C}} \text { and } \mathrm{g}_{q}: q \succ p \succ \overrightarrow{\mathrm{C}}
$$

Ask if p is a possible president.

To begin with, p and q tie at a score of n each. p 's score is "locked in" at n.
Nominees from a dominating set
"block" q from acquiring any additional score.

Talk Outline

Introduction

Preliminaries

High-level methodology
W[2]-hardness parameterized by \#parties
Open Problems

Open Problems

Is Possible President parameterized by the number of parties FPT on single-peaked or single-crossing domains?

Parameterized complexity when parameterized by the number of voters?

Open Problems

Intermediate notions of incomplete information.

What if we have partial information about the other nominees, served either in a stochastic fashion or as a fixed fraction of the number of parties?
Thank You!

[^0]: * Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J. Katz, Joseph S. B. Mitchell, Marina Simakov. Choice is Hard, ISAAC 2015

