### PARAMETERIZED COMPLEXITY OF PARTY NOMINATIONS

#### NEELDHARA MISRA, IIT GANDHINAGAR



Norkshop on Games

### **CHENNAI MATHEMATICAL INSTITUTE**



école normale supérieure paris-saclay







Candidates



Condidates





Candidates





Condidates





Condidates



The candidates are partitioned into "parties".



Condidates





Condidates





Condidates



Votes



Condidates



Votes



The winner is declared based on the plurality voting rule.

# THE PROBLEM

Assuming complete knowledge about the votes, how do parties select their nominees?

# An Example







# An Example







# An Example





Votes

# THE PROBLEM

Assuming complete knowledge about the votes, how do parties select their nominees?

# THE PROBLEM

Assuming **complete knowledge** about the votes, how do parties **select their nominees**?

What do the parties know about other nominees?

PLURALITY

#### 

Plurality

If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party.



PLURALITY

If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party.



Plurality

If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party. ()



PLURALITY

If we know who the other parties are nominating, it is easy to "evaluate" a candidate in our party. ()



We have **no idea** who the other nominees are.

We have **no idea** who the other nominees are.

# THE OPTIMIST'S QUESTION

Do we have a superstar candidate who ensures a party win, **irrespective of who is nominated** from the other parties?

We have **no idea** who the other nominees are.

# THE OPTIMIST'S QUESTION

Do we have a superstar candidate who ensures a party win, **irrespective of who is nominated** from the other parties?

# THE PESSIMIST'S QUESTION

We have **no idea** who the other nominees are.

## NECESSARY PRESIDENT

Do we have a superstar candidate who ensures a party win, **irrespective of who is nominated** from the other parties?

# THE PESSIMIST'S QUESTION

We have **no idea** who the other nominees are.

## NECESSARY PRESIDENT

Do we have a superstar candidate who ensures a party win, **irrespective of who is nominated** from the other parties?

### Possible President

## NECESSARY PRESIDENT

Do we have a superstar candidate who ensures a party win, **irrespective of who is nominated** from the other parties?

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

## NECESSARY PRESIDENT

Do we have a superstar candidate who ensures a party win, **irrespective of who is nominated** from the other parties?

**co-NP complete** even when the size of the largest party is two.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

## NECESSARY PRESIDENT

Do we have a superstar candidate who ensures a party win, **irrespective of who is nominated** from the other parties?

**co-NP complete** even when the size of the largest party is two. **polynomial-time** when the profiles are single-peaked.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

# Possible President

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

# Possible President

Do we have a promising candidate who makes the party win in **at least one** of the many possible parallel universes?

**NP-complete** even when the size of the largest party is two.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

# Possible President

Do we have a promising candidate who makes the party win in **at least one** of the many possible parallel universes?

NP-complete even when the size of the largest party is two. NP-complete also when the profiles are 1D-Euclidean.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

# Possible President

Do we have a promising candidate who makes the party win in **at least one** of the many possible parallel universes?

**NP-complete** even when the size of the largest party is two. **NP-complete** *also* when the profiles are **1D-Euclidean**.

(a subclass of single-peaked & single-crossing profiles)

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

# THIS TALK

# THIS TALK

**POSSIBLE PRESIDENT** 

# THIS TALK

#### **POSSIBLE PRESIDENT**

NP-complete even when the size of the largest party is two. NP-complete also when the profiles are 1D-Euclidean.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016
#### **POSSIBLE PRESIDENT**

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

#### **POSSIBLE PRESIDENT**

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

(A stronger hardness result.)

#### **POSSIBLE PRESIDENT**

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

(A stronger hardness result.)

**XP** and **W[2]-hard** parameterized by the **number of parties**.

#### **POSSIBLE PRESIDENT**

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

(A stronger hardness result.)

**XP** and **W[2]**-hard parameterized by the number of parties.

FPT parameterized by number of parties on 1D-Euclidean profiles.

#### Possible President

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

(A stronger hardness result.)

**XP** and **W[2]**-hard parameterized by the number of parties.

FPT parameterized by number of parties on 1D-Euclidean profiles.

(Parameterized Results)

**NECESSARY PRESIDENT** 

#### **NECESSARY PRESIDENT**

**co-NP complete** even when the size of the largest party is two. **polynomial-time** when the profiles are single-peaked.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

#### **NECESSARY PRESIDENT**

**co-NP complete** even when the size of the largest party is two. **polynomial-time** when the profiles are single-peaked.

**polynomial-time** when the profiles are single-crossing.

Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, Jèrôme Monnot. How hard is it for a party to nominate an election winner? AAAI 2016

## TALK OUTLINE

Introduction

Preliminaries

High-level methodology

W[2]-hardness parameterized by #parties

**Open Problems** 

## TALK OUTLINE

Introduction

Preliminaries

High-level methodology

W[2]-hardness parameterized by #parties

**Open Problems** 

Classical complexity: measure the performance of an algorithm as a function of the input size.

Parameterized complexity: acknowledge the presence of additional structure, which manifests as a secondary measurement — a **parameter**.

Parameterized complexity: acknowledge the presence of additional structure, which manifests as a secondary measurement — a **parameter**.

Oesign algorithms that restrict the combinatorial explosion to a function of the parameter.

Parameterized complexity: acknowledge the presence of additional structure, which manifests as a secondary measurement — a **parameter**.

Oesign algorithms that restrict the combinatorial explosion to a function of the parameter.

Parameter Input size f(k)p(n)

fixed-parameter tractability

W-hardness: a framework for arguing the likely non-existence of FPT algorithms for parameterized problems

Parameter Input size f(k)p(n)

fixed-parameter tractability

W-hardness: a framework for arguing the likely non-existence of FPT algorithms for parameterized problems



W-hardness: a framework for arguing the likely non-existence of FPT algorithms for parameterized problems



Runs in FPT time • Preserves the parameter • Maintains equivalence

## TALK OUTLINE

Introduction

Preliminaries

High-level methodology

W[2]-hardness parameterized by #parties

**Open Problems** 

### Possible President

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

**XP** and **W[2]-hard** parameterized by the **number of parties**.

FPT parameterized by number of parties on 1D-Euclidean profiles.

### Possible President

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

**XP** and **W[2]-hard** parameterized by the **number of parties**.

FPT parameterized by number of parties on 1D-Euclidean profiles.

Reduction from "Linear" SAT aka LSAT (a structured variation of SAT, originally used in the context of geometric problems\*)

<sup>\*</sup> Esther M. Arkin, Aritra Banik, Paz Carmi, Gui Citovsky, Matthew J. Katz, Joseph S. B. Mitchell, Marina Simakov. Choice is Hard, ISAAC 2015

### Possible President

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

**XP** and **W[2]-hard** parameterized by the **number of parties**.

FPT parameterized by number of parties on 1D-Euclidean profiles.

Brute-force (guess the nominee from each party)

### Possible President

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

**XP** and **W[2]**-hard parameterized by the number of parties.

FPT parameterized by number of parties on 1D-Euclidean profiles.

FPT-reduction (from a variant of Dominating Set, also coming up in this talk)

### POSSIBLE PRESIDENT

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

**XP** and **W[2]-hard** parameterized by the **number of parties**.

**FPT** parameterized by **number of parties** on **1D-Euclidean profiles**.

Dynamic Programming (updates along the 1D-Euclidean axis, also appeals to "SP and SC aspects" of 1D-Euclidean profiles)

### POSSIBLE PRESIDENT

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

XP and W[2]-hard parameterized by the number of parties.

FPT parameterized by number of parties on 1D-Euclidean profiles.

#### NECESSARY PRESIDENT

polynomial-time when the profiles are single-crossing.

### POSSIBLE PRESIDENT

**NP-complete** even when the size of the largest party is two, *and* the profiles are 1D-Euclidean.

**XP** and **W[2]-hard** parameterized by the **number of parties**.

FPT parameterized by number of parties on 1D-Euclidean profiles.

#### **NECESSARY PRESIDENT**

**polynomial-time** when the profiles are single-crossing.

Adversarial approach: guess a nominee + a rival candidate (use a "block property" and reduce to a structured Hitting Set instance)

## TALK OUTLINE

Introduction

Preliminaries

High-level methodology

W[2]-hardness parameterized by #parties

**Open Problems** 

hard parameterized by the "solution size"



#### 

hard parameterized by the "solution size"



#### 





















#### Introduce a candidate for every red vertex; and **two special candidates p and q**.



#### Introduce a candidate for every red vertex; and **two special candidates p and q**.

<u>Parties.</u> p,q are singletons. The other parties correspond to color classes of the CRBDS instance.

Introduce a vote for every blue vertex with the ordering:

non-neighbours

$$v_k: \overrightarrow{S_k} \succ q \succ \overrightarrow{C \setminus S_k} \succ p.$$

neighbours
Also introduce n copies of two special votes:

Also introduce n copies of two special votes:

 $g_p: p \succ q \succ \overrightarrow{C}$  and  $g_q: q \succ p \succ \overrightarrow{C}$ .

Also introduce n copies of two special votes:

$$g_p: p \succ q \succ \overrightarrow{C}$$
 and  $g_q: q \succ p \succ \overrightarrow{C}$ .

Ask if **p** is a possible president.

Also introduce n copies of two special votes:

 $g_p: p \succ q \succ \overrightarrow{C}$  and  $g_q: q \succ p \succ \overrightarrow{C}$ .

Ask if **p** is a possible president.

Answer: YES <u>if and only if</u> the "other nominees" correspond to a colourful red-blue dominating set.

Also introduce n copies of two special votes:

 $g_p: p \succ q \succ \overrightarrow{C}$  and  $g_q: q \succ p \succ \overrightarrow{C}$ .

Ask if **p** is a possible president.

To begin with, p and q tie at a score of n each. p's score is "locked in" at n. Nominees from a dominating set "block" q from acquiring any additional score.

# TALK OUTLINE

Introduction

Preliminaries

High-level methodology

W[2]-hardness parameterized by #parties

**Open Problems** 

## Open Problems

Is Possible President parameterized by the number of parties FPT on single-peaked or single-crossing domains?

Parameterized complexity when parameterized by the number of voters?



## Open Problems

#### Intermediate notions of incomplete information.

What if we have partial information about the other nominees, served either in a stochastic fashion or as a fixed fraction of the number of parties?





Thank You!