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WHEN ARE TWO GAMES THE SAME ? 

—————o—————



‣ From whose point of view ? (players, modelers) 

‣ Different perspectives: transformations, structural, agents

WHEN ARE TWO GAMES THE SAME ? 
—————o—————

Main focus: A high-level abstract framework of game forms



THOMPSON TRANSFORMATIONS
—————o—————

Game-theoretic analyses should not depend on “irrelevant” features of the 
mathematical description of the game

F.B. Thompson (1952)
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Coalescing of moves
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Interchange of moves
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THOMPSON’S THEOREM
—————o—————

Each of the previous transformations preserve the reduced strategic form of the  
game. In any finite extensive form games of imperfect information, if any two  
games have the same reduced normal form then one can be obtained from the 
other by a sequence.  

F.B. Thompson (1952)



OTHER EXAMPLES
—————o—————

S. Elmes and P.J. Reny (1994)

G. Bonanno (1992)



‣ Extensive-form games are natural process models. 

‣ When are two processes the same? 

‣ A modal logic perspective and the notion of bisimulation 

‣ “When are two games the same?” ≈ “Do they exhibit the same properties that can be expressed in 
some appropriate language?”

GAMES AS PROCESSES
—————o—————

J. van Benthem (2002)



POWERS OF PLAYERS
—————o—————

650 J. van Benthem et al.

for new invariances is ongoing. In this paper we offer a new notion bridging between
game theory and logic: basic power equivalence, that uses powers encoding a sort of
qualitative equilibria where all players matter. We determine its properties in a new
representation theorem, find a complete associated modal neighborhood logic of a
novel kind, and explore a new game algebra for basic powers that eventually forces us
to change from functional to relational strategies. Moreover, we establish interesting
connections with imperfect information games and epistemic logic.

This paper fits with a body of earlier work. Our approach is partly inspired by the
computational literature on process equivalences, ranging from coarser trace equiv-
alence to more fine-grained notions of bisimulation [5]. Even more central to us is
the notion of power equivalence, implicit in the game algebra of Parikh [19], which
also links with the set-theoretic forms for games in [8]. A precursor inside game
theory is the celebrated transformation analysis of equivalent games with imperfect
information by Thompson [23], refined in [10]. Game theory also has comparative
discussions of the information available in extensive forms and in strategic nor-
mal forms [17], a style of invariance analysis that remains to be connected to our
logic-based approach.

Another highly relevant strand for what follows is the work on social rights
and games starting from [12], developed technically by Peleg and co-authors in a
sequence of papers and books, cf. [21, 22], and connected to modal coalition logics
by Pauly in [20], with further contributions such as [14]. More specific references to
this tradition will be found at various places in this paper.

Even so, our analysis has clear limitations in what it takes on board. More delicate
intuitions of game equivalence emerge once we consider players’ preferences, or their
types, or when we focus on correlations between available equilibria in the games
being compared. These richer settings are beyond the scope of this paper, but they
pose a natural challenge to logic-based approaches.

2 Equivalence of Games, Old and New Answers

The question when two games are considered equivalent is fundamental to any game
theory. And as in many areas of mathematics, there is no unique answer: different
natural candidates exist. Here is an example from van Benthem [1].

Example 2.1 Are the following two games the same?

Fig. 1 Equivalent games
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E: {p}, {p, q}, {p, r}, {q, r} 
A: {p, q}, {p.r}

E: {p}, {p, q}, {p, r}, {q, r} 
A: {p, q}, {p.r}



‣ Let B be a set of states or game positions (the game board). 

‣ Each game g and player i is associated with a relation    : starting from a position in B 
player i can force the outcome of g to be among a subset of B.  

‣ Monotonicity: s  U and U  V imply s  V 

‣ Consistency: s  U imply not s  (B \ U) 

‣ Two games g and h on the same game board are said to be equivalent (denoted by, g  h) if  =  
for each i.

Fi
g ⊆ B × 2B

Fi
g ⊆ Fi

g

Fi
g Fi

g

≈ Fi
g Fi

h

GAMES BOARDS (GAME MODELS): POWERS OF PLAYERS
—————o—————



COMPOSITE GAME OPERATORS
—————o—————

‣ s  U    iff      s  U  or  s  U 

‣ s  U    iff       s  U  and  s  U 

‣ s  U        iff       s  U 

‣ s  U      Iff       there exists V: s  V and for all v in V, v  U 

F1
g∪g′ F1

g F1
g′ 

F2
g∪g′ F2

g F2
g′ 

Fi
gd Fi

g

Fi
g;g′ Fi

g Fi
g′ 



‣ Models M : , where,  . 

‣ Language L :  ;   . 

‣ Here,  and , the set of atomic propositions and the set of atomic games, respectively. 

‣ M, s   iff there exists  such that s  U and for all u in U, M, u   . 

‣ Formulas: ,  

(B, {Fi
g : g ∈ 𝒢}, V ) V : 𝒫 → 2B

φ := p ∣ ¬φ ∣ φ ∧ φ ∣ ⟨G, i⟩φ G := g ∣ G ∪ G ∣ G; G ∣ Gd

p ∈ 𝒫 g ∈ 𝒢

⊧ ⟨G, i⟩φ U ⊆ B Fi
g ⊧ φ

⟨G ∪ G′ ,1⟩φ ↔ ⟨G,1⟩φ ∨ ⟨G′ ,1⟩φ ⟨Gd, i⟩φ ↔ ¬⟨G, i ⟩¬φ

GAME LOGIC
—————o—————

R. Parikh  (1985)



‣ Distributive Lattice . 

‣ De Morgan Laws: ,  

‣ Double negation:  

‣ ,  , , 
,  

‣ If  then  (here,  is an abbreviation for the equation )

(𝖦, ∧ , ∨ )

−(x ∧ y) ≈ (−x ∨ −y) −(x ∨ y) ≈ (−x ∧ −y)

− − x ≈ x

x; (y; z) ≈ (x; y); z (x ∨ y); z ≈ (x; z) ∨ (y; z) (x ∧ y); z ≈ (x; z) ∧ (y; z)
−(x; y) ≈ − x; − y

x ⪯ y x; z ⪯ y; z x ⪯ y x ∨ y ≈ y

GAME ALGEBRA
—————o—————

J. van Benthem (2000)



COMPLETE AXIOM SYSTEM OF GAME ALGEBRA
—————o—————

V. Goranko (2003)

Y. Venema (2003)



PARALLEL GAME : POWERS OF PLAYERS
—————o—————

J. van Benthem, S. Ghosh and F. Liu (2008)

‣ Let B be a set of states or game positions (the game board). 

‣ Each game g and player i is associated with a relation    : starting from a position in B 
player i can force the outcome of g to be among a set of subsets of B.  

‣ Monotonicity: s  U and U  V imply s  V 

‣ Consistency: s  U imply not s  (  \ U) 

‣ Two games g and h on the same game board are said to be equivalent (denoted by, g  h) if  =  
for each i.

Fi
g ⊆ B × 22B

Fi
g ⊆ Fi

g

Fi
g Fi

g 2B

≈ Fi
g Fi

h



PARALLEL GAME OPERATOR
—————o—————

‣ s  U    iff      s  U  or  s  U 

‣ s  U    iff       s  U  and  s  U 

‣ s  U        iff       s  U 

‣ s  U      Iff       there exists V: s  V and for all v in  V, v  U 

‣ s  U      Iff      there exists Y, Z: s  Y and s  Z  and X = {y  z: y in Y and z in Z} 

F1
g∪g′ F1

g F1
g′ 

F2
g∪g′ F2

g F2
g′ 

Fi
gd Fi

g

Fi
g;g′ Fi

g ∪ Fi
g′ 

Fi
g×g′ Fi

g Fi
g′ ∪



A TOY EXAMPLE
—————o—————

12

3.2. Forcing relations for product games

To introduce forcing relations for players in product games, we must
reconcile the two earlier perspectives. Games can produce complex
outcome states now, denoted by sets read ‘conjunctively’ as in CPDL,
but players also have choices leading to sets of such sets, still read
disjunctively at this second level as we did with DGL. Here is our
proposal - and it is the essential new feature of this paper. X,U, T,W
range over sets of sets of states, t, w range over sets of states, and s, u
range over states:

DEFINITION 3.5. Forcing relations for composite games are these:
sΩE

G[G0X iÆ sΩE

G
X or sΩE

G0X

sΩA

G[G0X iÆ sΩA

G
X and sΩA

G0X

sΩE

GdX iÆ sΩA

G
X

sΩA

GdX iÆ sΩE

G
X

sΩi

G;G0X iÆ 9U : sΩi

G
U and for each u 2

S
U , uΩi

G0X

sΩi

G£G0X iÆ 9T , 9W : sΩi

G
T and sΩi

G0W

and X = {t [ w : t 2 T and w 2 W}

As an illustration, we show how this format for computation of
players’ powers fits an intuitive example of parallel games, for instance,
simultaneous move selection in a matrix game:

E

¶¶ØØ
ØØ

ºº2
22

2

1 G 2

A

¶¶ØØ
ØØ

ºº2
22

2

3 H 4

To make things comparable, we now change earlier single outcomes
s to singleton states s. The powers of E in the game G are given by
{{1}}, {{2}} and that of A by {{1}, {2}}. Similarly, in the game H,
the powers of E and A are {{3}, {4}} and {{3}}, {{4}}, respectively.
The powers of E and A in the product game G £ H are then formed
by taking unions: {{1, 3}, {1, 4}}, {{2, 3}, {2, 4}} and {{1, 3}, {2, 3}},
{{1, 4}, {2, 4}}, respectively. Reading the inner brackets as conjunctive,
and the outer ones as disjunctive, this seems to fit our intuitions.

3.3. Concurrent DGL

3.3.1. Modal language and forcing models
The language of our new game logic of Concurrent DGL is a simple
combination of all ingredients we had so far:

synconcgamesrevised.tex; 22/03/2009; 13:57; p.12
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PARALLEL GAME LOGIC
—————o—————

‣ Models M : , where,  . 

‣ Language L :  ;     

‣ Here,  and , the set of atomic propositions and the set of atomic games, respectively. 

‣ M, s   iff there exists U  B such that s  U and for all u in  U, M, u   . 

‣ Formulas: , , 
 

(B, {Fi
g : g ∈ 𝒢}, V ) V : 𝒫 → 2B

φ := p ∣ ¬φ ∣ φ ∧ φ ∣ ⟨G, i⟩φ G := g ∣ G ∪ G ∣ G; G ∣ Gd ∣ G × G

p ∈ 𝒫 g ∈ 𝒢

⊧ ⟨G, i⟩φ ⊆ Fi
g ∪ ⊧ φ

⟨G ∪ G′ ,1⟩φ ↔ ⟨G,1⟩φ ∨ ⟨G′ ,1⟩φ ⟨Gd, i⟩φ ↔ ¬⟨G, i ⟩¬φ
⟨G × G′ , i⟩φ ↔ ⟨G, i⟩φ ∧ ⟨G′ , i⟩φ



‣ Game Algebra 

‣                                           

‣                              

‣  

‣ What else?

x × (y × z) ≈ (x × y) × z x × y ≈ y × x

x × (y ∨ z) ≈ (x × y) ∨ (x × z) x × (y ∧ z) ≈ (x × y) ∧ (x × z)

−(x × y) ≈ − x × −y

PARALLEL GAME ALGEBRA
—————o—————

Q: What is a complete axiom system for this parallel game algebra?
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2 Equivalence of Games, Old and New Answers

The question when two games are considered equivalent is fundamental to any game
theory. And as in many areas of mathematics, there is no unique answer: different
natural candidates exist. Here is an example from van Benthem [1].

Example 2.1 Are the following two games the same?
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BASIC POWERS OF PLAYERS
—————o—————

J. Van Benthem, N. Bezhanishvili and S. Enqvist (2019)

‣ Let B be a set of states or game positions (the game board). 

‣ Each game g and player i is associated with a relation    : starting from a position in B 
player i can force the outcome of g to be among a subset of B.  

‣ Consistency: s  U imply not s  (B \ U) 

‣ Exhaustiveness: If s  U and u is in U, then there exists V: s  V and u is in V 

‣ Two games g and h on the same game board are said to be equivalent (denoted by, g  h) if  =  
for each i.

Fi
g ⊆ B × 2B

Fi
g Fi

g

Fi
g Fi

g

≈ Fi
g Fi

h



COMPOSITE GAME OPERATORS
—————o—————

‣ s  U    iff      s  U  or  s  U 

‣ s  U    iff       there exists X, Y: s  X  and  s  Y and U = X  Y 

‣ s  U        iff       s  U 

F1
g∪g′ F1

g F1
g′ 

F2
g∪g′ F2

g F2
g′ ∪

Fi
gd Fi

g



‣                                                   

‣                                  

‣  

‣                                                       

x ∪ y ≈ y ∪ x x ∩ y ≈ y ∩ x

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z x ∩ (y ∩ z) ≈ (x ∩ y) ≈ z

− − x ≈ x

−(x ∩ y) ≈ (−x ∪ −y) −(x ∪ y) ≈ (−x ∩ −y)

BASIC GAME ALGEBRA
—————o—————

Q: What is a complete axiom system for this basic game algebra?



‣ There are many other similar open questions in terms of different game algebras 

‣ One can consider different levels as well: adding preferences, knowledge, explicit strategies 

‣ Other interesting notions of player powers                     

TO END WITH …
—————o—————

Thank you


