Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute

Theorem (Lecture 7)

Deterministic timed automata are closed under complement

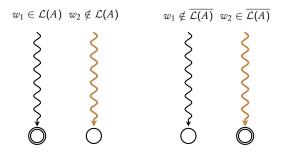
Deterministic timed automata are closed under complement

1. Unique run for every timed word

 $w_1 \in \mathcal{L}(A) \quad w_2 \notin \mathcal{L}(A)$

Deterministic timed automata are closed under complement

- 1. Unique run for every timed word
- 2. Complementation: Interchange acc. and non-acc. states

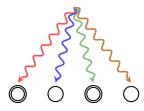


Theorem (Lecture 1)

Non-deterministic timed automata are not closed under complement

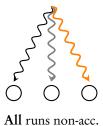
Many runs for a timed word

 $w_1 \in \mathcal{L}(A)$



Exists an acc. run

 $w_2 \notin \mathcal{L}(A)$



Theorem (Lecture 1)

Non-deterministic timed automata are not closed under complement

Many runs for a timed word

 $w_1 \in \mathcal{L}(A)$ $w_2 \notin \mathcal{L}(A)$ $w_2 \notin \mathcal{L}(A)$

Exists an acc. run

All runs non-acc.

Complementation: interchange acc/non-acc + ask are all runs acc. ?

A timed automaton model with **existential** and **universal** semantics for acceptance

Lecture 9: Alternating timed automata

Lasota and Walukiewicz. FoSSaCS'05, ACM TOCL'2008

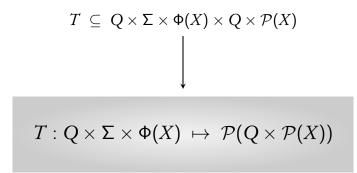
Section 1: Introduction to ATA

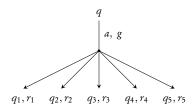
- ► X : set of clocks
- $\Phi(X)$: set of clock constraints σ (guards)

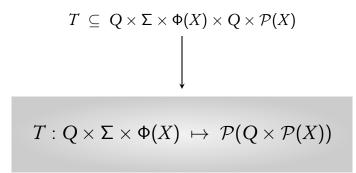
$$\sigma: x < c \mid x \leq c \mid \sigma_1 \land \sigma_2 \mid \neg \sigma$$

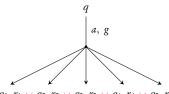
c is a non-negative integer

• Timed automaton A: $(Q, Q_0, \Sigma, X, T, F)$ $T \subseteq Q \times \Sigma \times \Phi(X) \times Q \times \mathcal{P}(X)$









 $q_1, r_1 \lor q_2, r_2 \lor q_3, r_3 \lor q_4, r_4 \lor q_5, r_5$

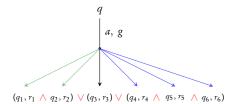
$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$
$$\downarrow \mathcal{B}^+(S) \text{ is all } \phi ::= S \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2$$

 $T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{P}(Q \times \mathcal{P}(X))$$
$$\downarrow \mathcal{B}^+(S) \text{ is all } \phi ::= S \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2$$

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$



Alternating Timed Automata

An ATA is a tuple $A = (Q, q_0, \Sigma, X, T, F)$ where:

$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$

is a finite partial function.

Alternating Timed Automata

An ATA is a tuple $A = (Q, q_0, \Sigma, X, T, F)$ where:

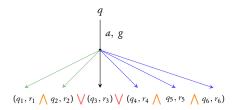
$$T: Q \times \Sigma \times \Phi(X) \mapsto \mathcal{B}^+(Q \times \mathcal{P}(X))$$

is a finite partial function.

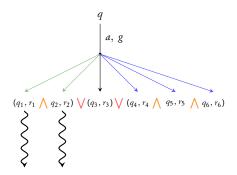
```
Partition: For every q, a the set

{ [\sigma] | T(q, a, \sigma) is defined }

gives a finite partition of \mathbb{R}^X_{\geq 0}
```

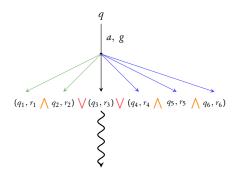


Accepting run from q iff:



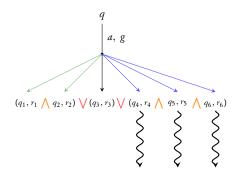
Accepting run from q iff:

accepting run from q₁ and q₂,



Accepting run from q iff:

- accepting run from q₁ and q₂,
- or accepting run from q_3 ,



Accepting run from q iff:

- accepting run from q₁ and q₂,
- or accepting run from q_3 ,
- or accepting run from q_4 and q_5 and q_6

L: timed words over $\{a\}$ containing **no two** a's at distance 1 (Not expressible by non-deterministic TA)

L: timed words over $\{a\}$ containing **no two** a's at distance 1 (Not expressible by non-deterministic TA)

ATA:

$$egin{array}{rcl} q_0,a,tt&\mapsto&(q_0,\emptyset)\wedge(q_1,\{x\})\ q_1,a,x=1&\mapsto&(q_2,\emptyset)\ q_1,a,x
eq1&\mapsto&(q_1,\emptyset)\ q_2,a,tt&\mapsto&(q_2,\emptyset) \end{array}$$

 q_0, q_1 are acc., q_2 is non-acc.

Closure properties

- Union, intersection: use disjunction/conjunction
- Complementation: interchange
 - 1. acc./non-acc.
 - 2. conjunction/disjunction

Closure properties

- Union, intersection: use disjunction/conjunction
- Complementation: interchange
 - 1. acc./non-acc.
 - 2. conjunction/disjunction

No change in the number of clocks!

Section 2:

The 1-clock restriction

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (via Lecture 4)

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (via Lecture 4)

Decidable for **one clock** (via Lecture 5)

- Emptiness: given A, is $\mathcal{L}(A)$ empty
- Universality: given A, does $\mathcal{L}(A)$ contain all timed words
- Inclusion: given A, B, is $\mathcal{L}(A) \subseteq \mathcal{L}(B)$

Undecidable for two clocks or more (via Lecture 4)

Decidable for **one clock** (via Lecture 5)

Restrict to one-clock ATA

Theorem

Languages recognizable by 1-clock ATA and (many clock) TA are incomparable

 \rightarrow proof on the board

Next class

Complexity of emptiness of 1-clock ATA