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Approach/Exit

Lower/Raise

Reachability: Does something bad happen?

“The gate is still open when the train is 2 minutes away from the crossing”

This problem is PSPACE-complete

A theory of timed automata
R. Alur and D.L. Dill, 7CS*94
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Verimag (France)
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National Taiwan University (Taiwan)
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Uppsaala university (Sweden), Aalborg university (Denmark)

KRONOS:
Verimag (France)

RED

National Taiwan University (Taiwan)

Rabbit
Brandenburg TU Cottbus (Germany)

and still research on for efficient algorithms . . .
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Lecture 6:
Reachability



Timed Automata

{1}

<) {v}

Run: finite sequence of transitions

YRONYN

x 0 09
y 0] 0

» accepting if ends in state




Reachability problem

Given a TA, does it have an accepting run

{1}

<1 {}

Theorem [ADY%4]
This problem is PSPACE-complete

first solution based on Regions



Key idea: Maintain sets of valuations reachable along a path

y y y
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Key idea: Maintain sets of valuations reachable along a path

Easy to describe convex sets



Zones and zone graph

» Zone: set of valuations defined by
conjunctions of constraints:

[ (y==0)
[3] (x<l && y<=x)
([1] (x<2 && y:ZO)) ([3] (1<x & x-y<l && _V(:x)j)

(m (,(X&;{.)) : eg (x=y=1) A (y<2)

X ~ C

X—y ~ ¢

[[1] (1<x && x<2 && y::())j

» Representation: by DBM [Dil89]

Sound and complete [DT98]

Zone graph preserves state reachability



Problem of non-termination

{x,7}




Abstractions

potentially infinite...
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Abstractions

a(Zo)
®,

R N

o a(W1)
(@,

T
(), 2 ()5 2 / \
o A
potentially infinite...




Abstractions
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Abstractions
a(Zo)
®), | =

, 2 Zone graph \
A?‘/% /f a( W1)

N\ —
(D e \
@ > % > W5 (W)

potentially infinite... a(W))

Z
32
:

Find a such that number of abstracted sets is finite



Abstractions
a(Zo)
ON ¥

, . Zone graph /f \
i~/ % a(W;)

<N =
e O N
- O =, JOW/2 (&

7, Z3

potentially infinite... a(W5)

Coarser the abstraction, smaller the abstracted graph



Condition 1: Abstractions should have finite range

Condition 2: Abstractions should be sound = a(W) can contain
only valuations simulated by W
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Condition 1: Abstractions should have finite range

Condition 2: Abstractions should be sound = a(W) can contain
only valuations simulated by W

Question: Why not add all the valuations simulated by W?
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Bounds and abstractions

Theorem [LS00]
Coarsest simulation relation is EXPTIME-hard
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Bounds and abstractions

Theorem [LS00]
Coarsest simulation relation is EXPTIME-hard

(r<3) (x < 4)
(x<1)

(x > 6)

<1

M-bounds [AD94] LU-bounds [BBLP04]
L(x) =6, L(y) = —o0
Ux) =4, Uy) =3

v =<y V v < vV

M(x) =6, M(y) =3




Abstractions in literature [BBLP04, Bou04]
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Abstractions in literature [BBLP04, Bou04]
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Abstractions in literature [BBLP04, Bou04]

a<ru Extraer
Closurey; «<— Extray, Extrasy
Non-convex \ /
Extray,
Convex

Only convex abstractions used in implementations!



Timed automata
Zone graph

Problem of non-termination —> Use finite abstractions

Zones
are
efficient

Bounds as parameters

Restriction to convex abstractions

Non-convex abstr.
are
coarser



Timed automata
Zone graph

Problem of non-termination —> Use finite abstractions

Zones
are
efficient

Bounds as parameters

Restriction to convex abstractions

Non-convex abstr.
are
coarser

Question: Can we benefit from both together?
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In this lecture...

Efficient use of the non-convex Closure approximation

Using non-convex approximations for efficient analysis of timed automata

F. Herbreteau, D. Kini, B. Srivathsan, I. Walukiewicz. FSTTCS’11
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Observation 1: We can use abstractions without storing
them



Using non-convex abstractions

a(Zo)
®,

/

a(Wwy) \
(@), a(Ws)

B=q N
Cl(W}) C CL(W1)?

, Standard algorithm: covering tree
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Using non-convex abstractions

a(Zs)

Pick simulation based a
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Using non-convex abstractions

Zs

&
b

Need to store only concrete semantics




Using non-convex abstractions

Zs

Zy

Use Z C a(Z') for termination




Observation 1: We can use abstractions without storing
them

Observation 2: We can do the inclusion test efficiently



Coming next...

The inclusion test Z C Closurey(Z')
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What is Closure,?

y

M(y)

M(x)

Closurey(Z): set of regions that Z intersects



C
C °
1

Y

Zl

M(x)



C
C °
l

Y

©
lo
surey
Z/
)

Zl

M(x)



C
C °
l

Y

©
lo
surey
Z/
)

Zl

M(x)



Z C Closurey(Z')?

Y

Zl

0 M(x)

Z ¢ Closurey(Z') < 3R. R intersects Z, R does not intersect Z'’
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Z C Closurey(Z')?

Y

Zl

0 M(x)
Z ¢ Closurey(Z') < 3R. R intersects Z, R does not intersect Z'’

Coming next: Steps to the efficient algorithm for Z Z Closurey(Z')

21/25



Step 1: Representing regions and zones
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Step 1: Representing regions and zones

x—0<3 y—0<o0
0—x< -2 0—y< -2

Need a canonical representation



Step 1: Representing regions and zones
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0—x< -2

Shortest path should be given by the direct edge



Step 1: Representing regions and zones

y—0< o0

0—x< -2

Shortest path should be given by the direct edge



Step 1: Representing regions and zones

x—0<3 y—0<o0
0—x< -2 0—y< -2

For every zone Z, canonical distance graph G



Step 2: When is R N Z' empty?

Inspired by an observation made in [Bou04]
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Step 2: When is R N Z' empty?

Inspired by an observation made in [Bou04]

Gproj, ., (R) Gproj, ., (2))
@ ® ® [ @
0 X2 X3 0 X2

Lemma

RNZ isempty < min(Gg, Gz ) has a negative cycle involving

at most 2 clocks!



Step 2: When is R N Z' empty?

Inspired by an observation made in [Bou04]

Gproj, ., (R) Gproj, ., (2))
@ ® ® [ @
0 X2 X3 0 X2

Lemma

RNZ isempty <«  Jx,y. Proj(R) N Proj,,(Z') is empty



Step 3: Reduction to two clocks
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Step 3: Reduction to two clocks

Recall: Z Z Closurey(Z') < 3R. R intersects Z, R does not intersect Z’
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Step 3: Reduction to two clocks

Recall: Z Z Closurey(Z') < 3R. R intersects Z, R does not intersect Z’

0 X2 X3 0 X X3
Z N R N i
Projy,s, (R)n Proszxj(Z) Projy,s, (R) N Proj,, ., (Z")
® ® °
0 X2 X3
Theorem

Z ¢ Closure,(Z') if and only if there exist 2 clocks x, y s.t.
Projxy(Z) Z Closurey(Proj, (Z'))



Step 3: Reduction to two clocks

0 X2 X3 0 b X3
Z N R N 7z
Projy,, (R) N Proj,.. () Proj,,., (R) N Proj,.. (Z")
[ ) [ [ ]
0 X2 X3
Theorem

Z ¢ Closure, (Z') if and only if there exist 2 clocks x, y s.t.
Projxy(Z) & Closurey(Proj, (Z"))

Slightly modified edge-edge comparison is enough



Step 3: Reduction to two clocks

0 X2 X3 0 b X3
Z N R N 7z
Projy,, (R) N Proj,.. () Proj,,., (R) N Proj,.. (Z")
[ ) [ [ ]
0 X2 X3
Theorem

Z ¢ Closure, (Z') if and only if there exist 2 clocks x, y s.t.
Projxy(Z) & Closurey(Proj, (Z"))

Complexity: O(|X|?), where X is the set of clocks



Step 3: Reduction to two clocks

0 X2 X3 0 b X3
Z N R N 7z
Projy,, (R) N Proj,.. () Proj,,., (R) N Proj,.. (Z")
[ ) [ [ ]
0 X2 X3
Theorem

Z ¢ Closure, (Z') if and only if there exist 2 clocks x, y s.t.
Projxy(Z) & Closurey(Proj, (Z"))

Same complexity as Z C Z'!



So what do we have now...

(90, Zo0)

(q1:21) # °* (g5,75)

g3 = q1 N\
Z3 C Closure, (Z;)? (92, 22)

(43, 23)
Efficient algorithm for Z C Closure,(Z')
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Overall algorithm

» Store concrete semantics : zones

» Compute ZG(A): Z C Closure,(Z') for termination



Non-convex

Convex

Next lecture: a,,, optimality and benchmarks

27/925



E

B W W & W

References I

R. Alur and D.L. Dill.

A theory of timed automata.

Theoretical Computer Science, 126(2):183-235, 1994.

G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen.

Static guard analysis in timed automata verification.

In TACAS’03, volume 2619 of LNCS, pages 254-270. Springer, 2003.

G. Behrmann, P. Bouyer, K. Larsen, and R. Pelinek.

Lower and upper bounds in zone based abstractions of timed automata.
Tools and Algorithms for the Construction and Analysis of Systems, pages 312-326, 2004.
P. Bouyer.

Forward analysis of updatable timed automata.

Form. Methods in Syst. Des., 24(3):281-320, 2004.

D. Dill.

Timing assumptions and verification of finite-state concurrent systems.
In AVMFSS, volume 407 of LNCS, pages 197-212. Springer, 1989.

C. Daws and S. Tripakis.

Model checking of real-time reachability properties using abstractions.
In TACAS*98, volume 1384 of LNCS, pages 313-329. Springer, 1998.
Frangois Laroussinie and Ph. Schnoebelen.

The state explosion problem from trace to bisimulation equivalence.
In Proceedings of the Third International Conference on Foundations of Software Science and Computation Structures,
FOSSACS *00, pages 192-207. Springer-Verlag, 2000.

27/925



