Topics in Timed Automata

B. Srivathsan

RWTH-Aachen

Software modeling and Verification group

System Specification $\mathcal{L}(A) \subseteq \mathcal{L}(B)$ \downarrow Is $\mathcal{L}(A) \cap \overline{\mathcal{L}(B)}$ empty?

System Specification $\mathcal{L}(A) \subseteq \mathcal{L}(B)$ Is $\mathcal{L}(A) \cap \overline{\mathcal{L}(B)}$ empty? first determinize B

Lecture 2:

Determinizing timed automata

For every (q, v) there is only one choice

Deterministic Timed Automata

Deterministic Timed Automata

Deterministic Timed Automata

Unique run

A DTA has a unique run on every timed word

A theory of timed automata

Accepting states: (q_F, \star) and (\star, q_F') for union (q_F, q_F') for intersection

Accepting states: (q_F, \star) and (\star, q_F') for union (q_F, q_F') for intersection

Theorem

DTA are closed under union and intersection

Complementation

Unique run

A DTA has a unique run on every timed word

⇒ DTA are closed under complement

(interchange accepting and non-accepting states)

Every DTA is a TA: $\mathcal{L}(DTA) \subseteq \mathcal{L}(TA)$

But there is a TA that cannot be complemented (Lecture 1)

$$\mathcal{L}(DTA) \subset \mathcal{L}(TA)$$

DTA

Unique run

Closed under \cup , \cap , comp.

$$\mathcal{L}(DTA) \subset \mathcal{L}(TA)$$

Given a TA, when do we know if we can determinize it?

Given a TA, when do we know if we can determinize it?

Theorem [Finkel'06]

Given a TA, checking if it can be determinized is undecidable

Given a TA, when do we know if we can determinize it?

Theorem [Finkel'06]

Given a TA, checking if it can be determinized is undecidable

Following next: some sufficient conditions for determinizing

To reset or not to reset?

First solution:

To reset or not to reset?

Whenever a, reset x_a

Event-recording clocks: time since last occurrence of event

Event-clock automata: a determinizable subclass of timed automata Alur, Henzinger, Fix. TCS'99

Event-recording automata

 $\{ ((abcd)^k, \tau) \mid a - c \text{ distance is } < 1 \text{ and } b - d \text{ distance is } > 2 \}$

{ (ab^*b, τ) | distance between first and last letters is 1}

Event-recording automata

 $\{ ((abcd)^k, \tau) \mid a - c \text{ distance is } < 1 \text{ and } b - d \text{ distance is } > 2 \}$

{ (ab^*b, τ) | distance between first and last letters is 1}

Determinizing ERA: modified subset construction

exponential in the number of states

DTA

Unique run

Closed under \cup , \cap , comp.

$$\mathcal{L}(DTA) \subset \mathcal{L}(TA)$$

Determinizable subclasses

ERA

To reset or not to reset?

To reset or not to reset?

Coming next: slightly modified version of BBBB-09

When are timed automata determinizable?

Baier, Bertrand, Bouyer, Brihaye. ICALP'09

Reset a **new** clock z_i at level i

Reset a **new** clock z_i at level i

Reset a **new** clock z_i at level i

Integer reset timed automata

Conditions:

- g has integer constants
- R is **non-empty** iff g has some constraint x = c

Implication:

 Along a timed word, a reset of an IRTA happens only at integer timestamps

Timed automata with integer resets: Language inclusion and expressiveness

Next: determinizing IRTA using the subset construction

M: max constant from among guards

assume the semantics of timed word (w, au) such that $au_1 < au_2 < \dots < au_k$

- ▶ If $k \ge M + 1$, then $z_{i_1} > M$ (as reset is **only** in integers)
- ▶ Replace z_{i_1} with \bot and **reuse** z_{i_1} further

DTA

Unique run

Closed under \cup , \cap , comp.

$$\mathcal{L}(DTA) \subset \mathcal{L}(TA)$$

Determinizable subclasses

ERA

IRTA

Reset a **new** clock z_i at level i

Strongly non-Zeno automata

A TA is strongly non-Zeno if there is $K \in \mathbb{N}$:

every sequence of greater than *K* transitions **elapses** at least 1 time unit

Theorem

Finitely many clocks suffice in the subset construction for strongly non-Zeno automata

(The number of clocks depends on size of region automaton...)

When are timed automata determinizable?

Baier, Bertrand, Bouyer, Brihaye. ICALP'09

$$\{(q_1,\sigma_1),(q_2,\sigma_2)\dots(q_k,\sigma_k)\}$$

 $\sigma_j:X\mapsto\{z_0,\dots,z_{p-1}\}$

$$\{(q_1, \sigma_1), (q_2, \sigma_2) \dots (q_k, \sigma_k)\}$$
$$\sigma_j : X \mapsto \{z_0, \dots, z_{p-1}\}$$

$$\sigma_j$$
: ___ __ __ |X| places

 p choices

$$\{(q_1,\sigma_1),(q_2,\sigma_2)\dots(q_k,\sigma_k)\}$$

$$\sigma_j:X\mapsto\{z_0,\dots,z_{p-1}\}$$

$$\sigma_j$$
: ___ __ __ |X| places p choices

no. of
$$\sigma_j$$
: $p^{|X|}$
no. of (q_j, σ_j) : $|Q| \cdot p^{|X|}$

$$\{(q_1, \sigma_1), (q_2, \sigma_2) \dots (q_k, \sigma_k)\} \qquad \mathbf{2}^{|Q| \cdot p^{|X|}}$$
$$\sigma_j : X \mapsto \{z_0, \dots, z_{p-1}\}$$

$$\sigma_j$$
: ___ __ __ |X| places p choices

no. of
$$\sigma_j$$
: $p^{|X|}$
no. of (q_j, σ_j) : $|Q| \cdot p^{|X|}$

→ doubly exponential in the size of initial automaton

DTA

Unique run

Closed under \cup , \cap , comp.

 $\mathcal{L}(DTA) \subset \mathcal{L}(TA)$

Determinizable subclasses

ERA

IRTA

SNZ

ERA IRTA SNZ

$$\xrightarrow{q_0} \xrightarrow{a} \xrightarrow{q_1} \xrightarrow{a} \xrightarrow{q_2} \xrightarrow{x=1, a} \xrightarrow{q_2}$$

ERA IRTA SNZ

Closure properties of ERA, IRTA, SNZ

- ► Union: disjoint union √
- ► Intersection: product construction √
- ► Complement: determinize & interchange acc. states √

DTA

Unique run

Closed under \cup , \cap , comp.

$$\mathcal{L}(DTA) \subset \mathcal{L}(TA)$$

Determinizable subclasses

ERA

IRTA

SNZ

ERA, IRTA, SNZ

Incomparable

Closed under \cup , \cap , comp.

Perspectives

Other related work:

- Event-predicting clocks (Alur, Henzinger, Fix'99)
- ▶ Bounded two-way timed automata (*Alur*, *Henzinger*'92)

For the future:

- ► Infinite timed words: Safra?
- Efficient algorithms