Topics in Timed Automata

B. Srivathsan

RWTH-Aachen

Software modeling and Verification group

A theory of timed automata R. Alur and D. Dill, TCS'94

A theory of timed automata R. Alur and D. Dill, TCS'94

Lecture 1:

Timed languages and timed automata

```
\sum : alphabet \{a, b\}
       \Sigma^*: words \{\varepsilon, a, b, aa, ab, ba, bb, aab, ...\}
L \subseteq \Sigma^*: language \longrightarrow property over words
      L_1 := \{ \text{set of words starting with an "} a " \}
                 \{a, aa, ab, aaa, aab, \ldots\}
      L_2 := \{ \text{set of words with a non-zero even length } \}
                 \{aa, bb, ab, ba, abab, aaaa, \dots\}
```

```
\sum : alphabet \{a, b\}
       \Sigma^*: words \{\varepsilon, a, b, aa, ab, ba, bb, aab, ...\}
L \subset \Sigma^*: language \longrightarrow property over words
      L_1 := \{ \text{set of words starting with an "} a " \}
                 \{a, aa, ab, aaa, aab, \ldots\}
      L_2 := \{ \text{set of words with a non-zero even length } \}
                 {aa, bb, ab, ba, abab, aaaa, . . . }
```

Finite automata, pushdown automata, Turing machines, ...

$$\sum$$
 : alphabet $\{a, b\}$

$T\Sigma^*$: timed words

$$\sum$$
 : alphabet $\{a, b\}$

$T\Sigma^*$: timed words

Word
$$(w, \tau)$$

$$w = a_1 \dots a_n$$

$$a_i \in \Sigma$$

$$\tau = \tau_1 \dots \tau_n$$

$$\tau_i \in \mathbb{R}_{\geq 0}$$

$$\tau_1 < \dots < \tau_n$$

$L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

$$L_1 := \{ (ab(a+b)^*, \tau) \mid \tau_2 - \tau_1 = 1 \}$$

$$L_2 := \{ (w, \tau) \mid \tau_{i+1} - \tau_i \ge 2 \text{ for all } i < |w| \}$$

$L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

$$L_1 := \{ (ab(a+b)^*, \tau) \mid \tau_2 - \tau_1 = 1 \}$$

$$L_2 := \{ (w, \tau) \mid \tau_{i+1} - \tau_i \ge 2 \text{ for all } i < |w| \}$$

Timed automata

 $L_3 := \{ (a^k, \tau) \mid k > 0, \ \tau_i = i \text{ for all } i \leq k \}$

An "a" occurs in every integer from $1, \ldots, k$

 $L_3 := \{ (a^k, \tau) \mid k > 0, \ \tau_i = i \text{ for all } i \leq k \}$ An "a" occurs in every integer from $1, \dots, k$

$$L_4 := \{ (a^k, \tau) \mid \text{exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$$

There are 2 "a"s which are at distance 1 apart

$L_4 := \{ (a^k, \tau) \mid \text{exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$ There are 2 "a"s which are at distance 1 apart

Three mechanisms to exploit:

- ▶ Reset: to **start** measuring time
- ▶ Guard: to impose time constraint on action
- ▶ Non-determinism: for existential time constraints

0.4

0.9

0.4

x

Run of
$$A$$
 over $(a_1a_2 \dots a_k; \ \tau_1\tau_2 \dots \tau_k)$ $\delta_i := \tau_i - \tau_{i-1}; \ \tau_0 := 0$ $(q_0, v_0) \xrightarrow{\delta_1} (q_0, v_0 + \delta_1) \xrightarrow{a_1} (q_1, v_1) \xrightarrow{\delta_2} (q_1, v_1 + \delta_2) \cdots \xrightarrow{a_k} (q_k, v_k)$ $(w, \tau) \in \mathcal{L}(A)$ if A has an accepting run over (w, τ)

Timed automata Runs

$L_5:=\{\; (\; abcd. \Sigma^*, \tau\;) \;|\; \tau_3-\tau_1 \leq 2 \; \text{and} \; \tau_4-\tau_2 \geq 5 \}$ Interleaving distances

$L_5 := \{ \text{ (abcd.} \Sigma^*, \tau \text{) } | \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \}$ Interleaving distances

$L_5 := \{ \text{ (abcd.} \Sigma^*, \tau \text{) } | \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \}$ Interleaving distances

Exercise: Prove that L_5 cannot be accepted by a one-clock TA.

n interleavings \Rightarrow need n clocks

n+1 clocks more expressive than n clocks

Timed automata

Runs

1 clock < 2 clocks < ...

 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

Claim: No timed automaton can accept L_6

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3:
$$(a; \lceil c_{max} \rceil + 1) \in L_6$$
 and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3:
$$(a; \lceil c_{max} \rceil + 1) \in L_6$$
 and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run
$$(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v_F')$$

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3:
$$(a; \lceil c_{max} \rceil + 1) \in L_6$$
 and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run
$$(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v_F')$$

Hence $(a; \lceil c_{max} \rceil + 1.1) \in \mathcal{L}(A) \neq L_6$

Therefore **no timed automaton** can accept L_6

$$L_7 = \{ ((ab)^k, \tau) \mid \tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \text{ for each } i \ge 1 \}$$
Converging ab distances

$$L_7 = \{ ((ab)^k, \tau) \mid \tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \text{ for each } i \ge 1 \}$$
Converging ab distances

Exercise: Prove that no timed automaton can accept L_7

$$\tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \iff \tau_{2i+2} - \tau_{2i} < \tau_{2i+1} - \tau_{2i-1} \\ \Leftrightarrow 1 < \tau_{2i+1} - \tau_{2i-1}$$

$$\tau_{2i+2} - \tau_{2i+1} < \tau_{2i} - \tau_{2i-1} \iff \tau_{2i+2} - \tau_{2i} < \tau_{2i+1} - \tau_{2i-1} \\ \Leftrightarrow 1 < \tau_{2i+1} - \tau_{2i-1}$$

Runs

1 clock < 2 clocks < ...

Role of max constant

Runs

1 clock < 2 clocks < ...

Role of max constant

Timed regular lngs.

Timed regular languages

Definition

A timed language is called **timed regular** if it can be **accepted** by a timed automaton

$$A = (Q, \Sigma, X, T, Q_0, F)$$
 $A' = (Q', \Sigma, X', T', Q'_0, F')$ $A_{\cup} = (Q \cup Q', \Sigma, X \cup X', T \cup T', Q_0 \cup Q'_0, F \cup F')$ $\mathcal{L}(A) \cup \mathcal{L}(A') = \mathcal{L}(A_{\cup})$

Timed regular languages are closed under union

$$A = (Q, \Sigma, X, T, Q_0, F) \qquad A' = (Q', \Sigma, X', T', Q'_0, F')$$

$$A_{\cap} = (Q \times Q', \Sigma, X \cup X', T_{\cap}, Q_0 \times Q'_0, F \times F')$$

$$T_{\cap} : (q_1, q'_1) \xrightarrow{a, g \land g'} (q_2, q'_2) \text{ if}$$

$$q_1 \xrightarrow{a, g \atop R} q_2 \in T \text{ and } q'_1 \xrightarrow{a, g' \atop R'} q'_2 \in T'$$

Timed regular languages are closed under intersection

L: a timed language over Σ

Untime(
$$L$$
) $\equiv \{w \in \Sigma^* \mid \exists \tau. (w, \tau) \in L\}$

Untiming construction

For every timed automaton A there is a finite automaton A_u s.t.

Untime(
$$\mathcal{L}(A)$$
) = $\mathcal{L}(A_u)$

more about this in Lecture 6 . . .

Complementation

$$\Sigma$$
 : { a , b }

$$L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and no action occurs at time } t + 1 \}$$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at a distance 1 from it } \}$$

Complementation

$$\Sigma$$
 : { a , b }

$$L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and } no \text{ action occurs at time } t + 1 \}$$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at a distance 1 from it } \}$$

Claim: No timed automaton can accept \overline{L}

Decision problems for timed automata: A survey

Alur, Madhusudhan. SFM'04: RT

Step 1:
$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at } a \text{ distance 1 from it } \}$$

$$Suppose \overline{L} \text{ is timed regular}$$

Step 1:
$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at a distance 1 from it } \}$$
Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid \text{ all } a$'s occur before time 1 and no two a's happen at same time $\}$

Clearly L' is timed regular

Step 1:
$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at } a \text{ distance 1 from it } \}$$

$$Suppose \overline{L} \text{ is timed regular}$$

Step 2: Let
$$L' = \{ (a^*b^*, \tau) \mid \text{ all } a\text{'s occur before time 1 and}$$
 no two $a\text{'s happen at same time } \}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 1:
$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at } a \text{ distance 1 from it } \}$$

$$Suppose \overline{L} \text{ is timed regular}$$

Step 2: Let
$$L' = \{ (a^*b^*, \tau) \mid \text{ all } a\text{'s occur before time 1 and}$$
 no two $a\text{'s happen at same time } \}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime(
$$\overline{L} \cap L'$$
) = { $a^n b^m \mid m \ge n$ }, not regular!

Step 1:
$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at } a \text{ distance 1 from it } \}$$

$$Suppose \overline{L} \text{ is timed regular}$$

Step 2: Let
$$L' = \{ (a^*b^*, \tau) \mid \text{ all } a\text{'s occur before time 1 and}$$
 no two $a\text{'s happen at same time } \}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime(
$$\overline{L} \cap L'$$
) = { $a^n b^m \mid m \ge n$ }, not regular!

Therefore \overline{L} cannot be timed regular

Timed regular languages are not closed under complementation

Runs

1 clock < 2 clocks < ...

Role of max constant

Timed regular lngs.

Closure under \cup , \cap

Non-closure under complement

Runs

1 clock < 2 clocks < ...

Role of max constant

Timed regular lngs.

Closure under \cup , \cap

Non-closure under complement

 ε -transitions

Claim: No timed automaton can accept L_6

$$L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$$

ε -transitions

 ε -transitions add expressive power to timed automata.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

ε -transitions

 ε -transitions add expressive power to timed automata. However, they add power only when a clock is **reset** in an ε -transition.

Characterization of the expressive power of silent transitions in timed automata

Bérard, Diekert, Gastin, Petit. Fundamenta Informaticae'98

Runs

1 clock < 2 clocks < ...

Role of max constant

Timed regular lngs.

Closure under ∪, ∩

Non-closure under complement

ε -transitions

More expressive

 $\stackrel{\varepsilon}{\longrightarrow}$ without reset \equiv TA

Runs

1 clock < 2 clocks < ...

Role of max constant

Timed regular lngs.

Closure under ∪, ∩

Non-closure under complement

ε -transitions

More expressive

 $\stackrel{\varepsilon}{\longrightarrow}$ without reset \equiv TA

Next lecture: Determinization