
Reachability algorithm using zones

B. Srivathsan

Chennai Mathematical Institute, India

In a previous lecture, we asked the following question: given a timed automaton A =
(Q,Σ, X, T, q0, Acc), when is L(A) empty? L(A) is non-empty iff there exists a run of the
automaton that leads to an accepting state. Note that existence of an accepting run does
not depend on how the letters of Σ are labeled on the transitions. In fact, it does not depend
on Σ itself. Henceforth, we consider automata without an alphabet: A = (Q,X, T, q0, Acc).
Language emptiness then reduces to asking if an accepting state is reachable. The language
emptiness problem would now be called the reachability problem for timed automata.

We have seen that a solution to this problem proceeds by the region graph construction.
As we have seen, the number of regions is exponential in the number of clocks. While
modeling a system, each component of the system is modeled as a timed automaton and
the entire system is then obtained by a product construction of the individual automata.
This immediately gives rise to many states, a phenomenon known as state-space explosion.
If on top of this, one attaches exponentially many regions to each state, the algorithm runs
out of memory. Therefore the region based method is infeasible in practice.

Goal: In this part of the course, we will consider two aspects:

1. How to reduce the number of “time components” attached to each state?

2. How to reduce the number of discrete states themselves?

The broad idea is as follows. We want to design an algorithm that for a timed automaton
A constructs a finite graph Graph(A) with some accepting nodes, that satisfies the following
two properties:

soundness: if an accepting node is reacheable in Graph(A) then there is a run of A that
reaches an accepting state

completeness: if an accepting state is reachable in A then an accepting node is reachable
in Graph(A)

If we manage to define such a Graph(A), then one could have an algorithm that constructs
and simultaneously searches this graph (using standard breadth-first search or depth-search
search methods) for an accepting node. The goal is to come up with a Graph(A) as small
as possible and that can be efficiently computed.

1

2 Reachability algorithm using zones

1 Zones

Let us first recall the semantics of a timed automaton:

Definition 1 (Semantics of a timed automaton) Let A be a timed automaton. The
semantics of A is given by a transition system SA whose nodes are configurations (q, v)
consisting of a state q of A and a valuation v giving the values of clocks. The initial
configuration is given by (q0,0) with q0 being the initial state of A and 0 the valuation
that attaches the value 0 to every clock. The transition relation → is a union of two kinds
of transitions:

delay (q, v)→δ (q, v + δ) for some δ ∈ R≥0;

action (q, v) →t (q′, v′) for some transition t = (q, g, R, q′) ∈ T such that v � g and
v′ = [R]v.

To get a finite Graph(A), a standard solution is to group together all the valuations
reaching a state of the automaton via a particular path. We first define a transition
relation ⇒ over nodes of the form (q,W) where W is a set of valuations.

Definition 2 (Symbolic transition ⇒) Let A be a timed automaton. For every tran-
sition t of A and every set of valuations W , we have a transition ⇒t defined as follows:

(q,W)⇒t (q,W ′) where W ′ = {v′ | ∃v ∈ W, ∃δ ∈ R≥0. (q, v)→t→δ (q′, v′)}

The transition relation ⇒ is the union of all ⇒t.

The transition relation defined above considers each valuation v ∈ W that can take the
transition t, obtains the valuation after the transition and then collects the time-successors
from this obtained valuation. Therefore the symbolic transition⇒ always yields sets closed
under time-successors. The initial configuration of the automaton is (q0,0). Starting from
the initial valuation 0 the set of valuations reachable by a time elapse at the initial state
are given by {0 + δ | δ ∈ R≥0}. Call this W0. From (q0,W0) as the initial node, computing
the symbolic transition relation ⇒ leads to different nodes (q,W) wherein the sets W are
closed under time-successors.

Example 3 Consider the automaton with two clocks shown below. The sets of valua-
tions computed using the above symbolic transition relation is shown on the top of the
automaton.

q0 q1 q2 q3
(x ≤ 5) (y ≥ 7)

{x}

x = y ≥ 0 x = y ≥ 0 y − x ≥ 7 y − x ≥ 7

x

y

x

y

x

y

x

y

Zones 3

x

y

0

y
−
x
<

1

x > 1

y > 1

x
−
y
<

2

x < 5

y < 4

Figure 1.1: An example of a zone

It has additionally been noticed that the sets W obtained in the nodes (q,W) can be
described by some simple constraints involving only the difference between clocks [BY04].
This has motivated the definition of zones, which are sets of valuations defined by difference
constraints.

Definition 4 (Zones [BY04]) A zone is a set of valuations defined by a conjunction of
two kinds of clock constraints: for x, y ∈ X

x ∼ c

x− y ∼ c

where, ∼∈ {≤, <,=, >,≥} and c ∈ Z. For example, (x > 4 ∧ y − x ≤ 1) is a zone.

Another example of a zone is illustrated in Figure 1.1. The sets depicted in Example 3
are zones. We will prove in the next lecture that starting from a node (q,W) with W being
a zone, the transition (q,W)⇒ (q′,W ′) leads to a node in which W ′ is again a zone [BY04].
Observe that the initial set of valuations W0 = {0 + δ | δ ∈ R≥0} is indeed a zone: it is
given by the constraints ∧

x,y∈X

(x ≥ 0 ∧ x− y = 0)

We will now define a symbolic semantics of timed automata which is a transition system
with nodes consisting of zones. This is called the zone graph of the automaton. In the
sequel, zones are denoted by Z,Z ′, etc.

Definition 5 (Zone graph) Given a timed automaton A = (Q, q0, X, T , Acc), the zone
graph ZG(A) of A is a transition system whose nodes are of the form (q, Z) with q ∈ Q
and Z a zone. The initial node is (q0, Z0) where Z0 = {0 + δ | δ ∈ R≥0} is the set of
valuations obtained by elapsing time from 0. The transitions are given by the relation ⇒
of Definition 2.

4 Reachability algorithm using zones

q0 q1q2

{x}

x ≤ 2

y > 5

q0 : (0 ≤ x = y)q2 : (5 < x = y) q1 : (0 ≤ x ≤ y)

q0 : (0 ≤ x ≤ y)q2 : (0 ≤ x ≤ y, y > 5)

y > 5 {x}

y > 5

x ≤ 2{x}

Figure 1.2: An automaton and part of its zone graph

As zones have a simple description, they can be efficiently represented using what are
called Difference-Bound Matrices (DBMs) [Dil90]. Figure 1.1 shows another example of
an automaton and a part of its zone graph. We will now see how the successor of a node
(q, Z) is computed. Successors of a node (q, Z) are the of nodes (q′, Z ′) such that there
exists a transition t and (q, Z)⇒t (q′, Z ′)

Successor computation in the zone graph

The successor computation (q, Z) ⇒t (q′, Z ′) for a transition t = (q, g, R, q′) proceeds in
the following steps.

(q, Z)
guard−−−→ (q, Z ∧ g)

reset−−−→ (q, [R](Z ∧ g))
elapse−−−→ (q, Z ′)

In the above, Z∧g represents the set of valuations that satisfy the constraints of both Z
and g; the set [R](Z ∧ g) represents the set of valuations obtained by resetting clocks in R
from every valuation in Z ∧g and finally Z ′ is the set of valuations obtained by elapsing an
arbitrary amount of time from [R](Z ∧g). All these operations can be computed efficiently
using DBMs.

The costliest operation is the computation of the intersection of a zone with a guard.
In the general case when the guards are diagonals like x − y ≤ 5, the intersection takes
O(|X|3). However when the guards are diagonal free, it has been shown in [ZLZ05] that
the intersection operation can be done in O(|X|2) time. Another crucial operation required
in algorithms using zones is to know when a zone Z is included in another zone Z ′. We list
the common operations on zones and the complexity required to perform these operations
in Table 1.1. We will see more details about these operations in the next lecture. From the
table it can be inferred that computing the successor in the zone graph has a complexity
quadratic in the number of clocks.

A naive reachability algorithm 5

Operation Complexity

Z ∧ g O(|X|2) Z ∧ g = {v | v ∈ Z and v � g}
[R](Z) O(|X|.|R|) [R](Z) = {[R]v | v ∈ Z}

elapse(Z) O(|X|) elapse(Z) = {v + δ | v ∈ Z and δ ∈ R≥0}
Z ⊆ Z ′ O(|X|2)

Table 1.1: Operations on zones (note that g is diagonal free)

2 A naive reachability algorithm

Algorithm 1.1 shows a reachability algorithm that uses zones. The procedure starts from
(q0, Z0) and repeatedly computes and searches for a node that has an accepting state.

Algorithm 1.1: Reachability procedure using zones

1 Input: Timed automaton A = (Q,X = {x1, . . . , xk}, q0, T, Acc)
2 Output: Y es, when some state in Acc is reachable from q0; No otherwise
3

4 function main()
5

6 Waiting := ∅;
7 Passed := ∅;
8 Z0 := 0 ≤ x1 = x2 = · · · = xk
9

10 Add (q0, Z0) to Waiting
11

12 while (Waiting 6= ∅)
13 Remove (q, Z) from Waiting
14 Add (q, Z) to Passed
15 if (q is accepting)
16 exit Yes
17 else if (∃ (q, Z ′) ∈ Passed s.t. Z ⊆ Z ′)
18 continue
19 else
20 for each (qs, Zs) s.t. (q, Z)⇒ (qs, Zs) do
21 if (Zs 6= ∅)
22 Add (qs, Zs) to Waiting
23

24

25 return No

At any point of time during the execution of the algorithm, the part of the zone graph
computed by the algorithm is depicted in Figure 1.3.

Some remarks about the algorithm

1. There are three kinds of nodes computed by the algorithm: the ones in the Passed
list whose successors have been computed, the ones in the Waiting list that are yet
to be explored and the Covered nodes which are included in an existing Passed node.

6 Reachability algorithm using zones

(q0, Z0)

(q, Z1)

(q, Z′
1)

Z1 ⊆ Z′
1

(q, Z)

(q, Z′)

Z ⊆ Z′

Nodes in Passed list

Nodes in Waiting list

Covered nodes

Figure 1.3: Snapshot of the partially computed zone graph during the execution of the algorithm

Such covered nodes are not explored further. The covered nodes are not explicitly
stored.

2. The algorithm computes a tree. However, the exact tree structure is not maintained.
Only two lists of nodes are maintained. Although, for proofs it is convenient to
visualize the tree.

3. Depending on the data-structures used for the list, the search order is determined.
If the lists are stacks, then the search is depth-first. If the lists are queues, then the
search is breadth-first.

4. The algorithm is on-the-fly. We do not need the entire zone graph beforehand to
start the search for the accepting state. Note that we have only the automaton with
us and the nodes are computed as and when they are required.

Correctness of the algorithm

Note that the algorithm does not compute the entire zone graph. It does some optimization
by stopping the exploration of a node (q, Z) if it is already covered by a Passed node.
Therefore it is important to justify the correctness of this procedure.

Lemma 6 (Soundness) If there is a path (q0, Z0) ⇒t1 (q1, Z1) ⇒t2 . . . ⇒tn (qn, Zn) in
the tree computed by Algorithm 1.1, then there is a run of the automaton A:

(q0, v0)
δ0,t0−−→ (q1, v1)

δ1,t1−−→ . . .
δn,tn−−−→ (qn, vn)

such that vi ∈ Zi for all i ≤ n.

Proof
Direct from the definition of the symbolic transition (c.f. Definition 2). �

It is the completeness aspect that needs some justification as we stop exploration sooner.

A naive reachability algorithm 7

Lemma 7 (Completeness) Let ρ := (q0, v0)
δ0,t0−−→ (q1, v1)

δ1,t1−−→ . . .
δn,tn−−−→ (qn, vn) be a run

of A such that for 0 ≤ i ≤ n− 1, qi /∈ Acc, and qn could either be in Acc or not. Then for
each i ≤ n − 1, there exists a node (qi, Zi) in the Passed list of Algorithm 1.1 such that
vi ∈ Zi.

Proof
We proceed by an induction on the length of the run leading to (qn, vn).

Base case: We know that v0 ∈ Z0. The node (q0, Z0) is added to the Waiting list in Line
10. When Line 14 is executed the first time, the node (q0, Z0) is added to the Passed list.
For the base case, (q0, Z0) is the required node.

Induction case: Assume that for all 0 ≤ i ≤ m, there exists (qi, Zi) in Passed such that
vi ∈ Zi. We will now show that there exists (qm+1, Zm+1) in Passed such that vm+1 ∈ Zm+1.

By the induction hypothesis, we have (qm, Zm) in Passed such that vm ∈ Zm. Consider

the transition (qm, vm)
δm,tm−−−→ (qm+1, vm+1) of the run ρ. As (qm, Zm) is in Passed, the

transition ⇒tm would have been considered in the for loop of Line 20. Let (qm, Zm) ⇒tm

(qm+1, Zm+1) be the transition in the zone graph. By definition of the symbolic transition,
vm+1 ∈ Zm+1.

If (qm+1, Zm+1) is in Passed, we are done. If not, either qm+1 ∈ Acc and the algorithm
would have exited at Line 16. In this case, due to the condition required by the Lemma,
m = n−1 and we are done. The only other case when (qm+1, Zm+1) is not in Passed is when
there exists (qm+1, Z

′
m+1) in Passed such that Zm+1 ⊆ Z ′m+1). Therefore, vm+1 ∈ Z ′m+1 and

since (qm+1, Z
′
m+1) is in Passed, our required node would be (qm+1, Z

′
m+1).

�

The above two lemmas tell that the algorithm can detect reachability of an accepting
state correctly. However, we have not given justifications about its termination. In fact, it
turns out that the algorithm might not terminate for some automata.

Lemma 8 (Non-termination) There exist automata for which Algorithm 1.1 might not
terminate.

Proof
Consider the automaton Ainf shown in Figure 1.4, with two clocks {x, y} and no accepting
state. The initial node is given by (q0, x = y ∧ x ≥ 0). The transition to q1 gives the
node (q1, x = y ∧ x ≥ 0). The only transition from q1 taken from this node gives the node
(q1, x − y = 1 ∧ x ≥ 0), which is a new node. This node has its own successors and the
process continues. Finally at q1 we have the following zones in the zone graph ZG(Ainf),
all of which will be computed by Algorithm 1.1 as q1 is non-accepting:

(x− y = k ∧ x ≥ 0) for all k ∈ N
This is pictorially shown in Figure 1.4.

�

The next section explains methods to make the algorithm terminating: in other words,
methods to get a finite abstraction of the zone graph.

8 Reachability algorithm using zones

q0 q1

(y = 1)

x := 0

y := 0

y := 0

Figure 1.4: Automaton Ainf and the graph of zones obtained at q1

3 Finite abstractions of the zone graph

As seen from the example in Figure 1.4, it is useless to explore the state q1 again and again
even if the zones are not included in each other. Ideally, we want to something like this:

Let (q, Z) be a node newly removed from Waiting list. If there exists a node
(q, Z ′) in Passed such that all sequences of transitions that can be seen from
(q, Z) can be seen from (q, Z ′) too, then we don’t want to explore (q, Z).

This is because to check for state reachability, it is enough to determine one path that leads
to that state. Therefore, the criterion given above preserves the set of reachable states. A
convenient way of formalizing the above criterion is by making use of simulation relations.

Definition 9 ((Time-abstract) Simulation) A (time-abstract) simulation between two
states of transition system SA (Definition 1) is a relation (q, v) �A (q′, v′) such that:

• q = q′,

• if (q, v) →δ (q, v + δ) →t (q1, v1), then there exists a δ′ ∈ R≥0 such that (q, v′) →δ′

(q, v′ + δ′)→t (q1, v
′
1) satisfying (q1, v1) �A (q1, v

′
1) for the same transition t.

We say that (q, v) is simulated by (q′, v′).

(q, v) (q, v′)

(q1, v1) (q1, v
′
1)

δ

t

δ′

t

∀δ ∃δ′

�A

�A

Figure 1.5: Illustration of Definition 9

The definition is pictorially represented in Figure 1.5. Essentially the above definition
says that if the configuration (q, v) can elapse δ time units and take a transition t, then
the same transition can be taken from (q, v′) after an elapse of some δ′ time units. We
don’t need δ and δ′ to be the same. It is enough for us to ensure that transition t is taken.
The fact that the resulting configuration (q1, v1) is simulated by (q1, v

′
1) ensures that all

sequences of transitions that can be seen from (q, v) can be seen from (q′, v′) too.
We now need to extend these simulation relation to sets of valuations.

Finite abstractions of the zone graph 9

Definition 10 (Simulation on sets of valuations) Let A be an automaton W and W ′

be two sets of valuations of A. For each state q, we say that (q,W) is simulated by (q,W ′)
written as (q,W) �A (q,W ′) if:

for every v ∈ W, exists v′ ∈ W ′ s.t. (q, v) �A (q, v′)

We state below a property of simulation relations that is easy to prove.

Proposition 11 Simulation relations are reflexive and transitive.

Note that if (q,W) is simulated by (q,W ′) then all states that are reachable from (q,W)
would be contained in the set of states reachable from (q,W ′). This fact can be used to
give a correct criterion in Algorithm 1.1 to stop exploration of a zone (q, Z) that is newly
removed from the Waiting list. Currently the algorithm uses set inclusion Z ⊆ Z ′, which
is an example of a simulation relation.

Extending the naive algorithm with simulation relations

The modified algorithm is given below. The only change is the test (q, Z) �A (q, Z ′) instead
of Z ⊆ Z ′ when (q, Z) is newly removed from the Waiting list.

Algorithm 1.2: Reachability procedure using zones and simulation relations

1 Input: Timed automaton A = (Q,X = {x1, . . . , xk}, q0, T, Acc) and
2 �A a simulation relation
3 Output: Y es, when some state in Acc is reachable from q0; No otherwise
4

5 function main()
6

7 Waiting := ∅;
8 Passed := ∅;
9 Z0 := 0 ≤ x1 = x2 = · · · = xk

10

11 Add (q0, Z0) to Waiting
12

13 while (Waiting 6= ∅)
14 Remove (q, Z) from Waiting
15

16 if (q is accepting)
17 exit Yes
18 else if (∃ (q, Z ′) ∈ Passed s.t. (q, Z) �A (q, Z ′))
19 continue
20 else
21 for each (qs, Zs) s.t. (q, Z)⇒ (qs, Zs) do
22 if (Zs 6= ∅)
23 Add (qs, Zs) to Waiting
24 Add (q, Z) to Passed
25

26 return No

The goal is to come up with finite simulation relations.

10 Reachability algorithm using zones

Definition 12 (Finite simulations) A simulation relation � on a transition system
(S,−→) is finite if there exists a natural number N such that in every run:

s0 −→ s1 −→ . . . −→ sK

where K ≥ N , there exist i, j with i < j ≤ K satisfying sj � si.

If we can come up with a finite simulation relation �A in Algorithm 1.2, then we are
guaranteed to terminate. Before coming up with finite simulation relations, we need to
justify correctness of Algorithm 1.2. Yet again, it is completeness that is non-trivial.

Lemma 13 (Soundness) If there is a path (q0, Z0) ⇒t1 (q1, Z1) ⇒t2 . . . ⇒tn (qn, Zn) in
the tree computed by Algorithm 1.2, then there is a run of the automaton A:

(q0, v0)
δ0,t0−−→ (q1, v1)

δ1,t1−−→ . . .
δn,tn−−−→ (qn, vn)

such that vi ∈ Zi for all i ≤ n.

Proof
Direct from the definition of the symbolic transition (c.f. Definition 2). �

Lemma 14 (Completeness) Let �A be a time-abstract simulation on the semantics of
an automaton A. Let

ρ := (q0, v0)
δ0,t0−−→ (q1, v1)

δ1,t1−−→ . . .
δn,tn−−−→ (qn, vn)

be a run of A such that for 0 ≤ i ≤ n− 1, qi /∈ Acc, and qn could either be in Acc or not.
Then for each i ≤ n−1, there exists a node (qi, Zi) in the Passed list of Algorithm 1.2 that
contains a valuation which simulates vi: that is, there exists v′i ∈ Zi such that (qi, vi) �A

(qi, v
′
i).

Proof
We proceed by an induction on the length of the run leading to (qn, vn).

Base case: As �A is reflexive, we have (q0, v0) �A (q0, v0). Moreover, we know that
v0 ∈ Z0 and (q0, Z0) is added to the Passed list of Algorithm 1.2. This proves the base
case.

Induction case: Assume that for all 0 ≤ i ≤ m, there exists (qi, Zi) in Passed and
v′i ∈ Zi such that (qi, vi) �A (qi, v

′
i). We will now show that there exist (qm+1, Zm+1) in

Passed and v′m+1 ∈ Zm+1 such that (qm+1, vm+1) �A (qm+1, v
′
m+1).

By the induction hypothesis, we have (qm, Zm) in Passed and v′m ∈ Zm such that

(qm, vm) �A (qm, v
′
m). Consider the transition (qm, vm)

δm,tm−−−→ (qm+1, vm+1) of the run ρ.
Firstly, as (qm, v

′
m) simulates (qm, vm) there exists a δ′m such that:

(qm, v
′
m)

δ′m,tm−−−→ (qm+1, v
′
m+1) and (qm+1, vm+1) �A (qm+1, v

′
m+1)

Simulations from the region equivalence 11

Secondly, as (qm, Zm) is in Passed, the transition ⇒tm would have been considered in
the for loop of Line 20. Let (qm, Zm)⇒tm (qm+1, Zm+1) be the transition in the zone graph.
By definition of the symbolic transition, v′m+1 ∈ Zm+1.

If (qm+1, Zm+1) is in Passed, we are done as this gives us a node in Passed and a valuation
v′m+1 ∈ Zm+1 such that (qm+1, vm+1 �A (qm+1, v

′
m+1).

If not, either qm+1 ∈ Acc and the algorithm would have exited at Line 16. In this case,
due to the condition required by the Lemma, m = n− 1 and we are done. The only other
case when (qm+1, Zm+1) is not in Passed is when there exists (qm+1, Z

′
m+1) in Passed such

that Zm+1 �A Z
′
m+1). By Definition 10, there exists a u in Z ′m+1 such that (qm+1, v

′
m+1) �A

(qm+1, u). As simulation relations are transitive, we have (qm+1, vm+1) �A (qm+1, u). This
proves the induction case. �

The above two lemmas tell us that the algorithm is correct. If additionally, we can
come up with a finite simulation relation, the algorithm terminates.

Theorem 15 Let A be a timed automaton. Algorithm 1.2 terminates if �A is a simulation
relation. The set of reachable states in the tree computed by Algorithm 1.2 is the same as
the set of reachable states in A.

4 Simulations from the region equivalence

The previous section dealt with a general notion of simulation relation �A. In this section,
we will see an example of a simulation relation that can be computed on zones: that is,
given (q, Z) and (q, Z ′) we will give relation � that is finite, and for which (q, Z) � (q, Z ′)
can be checked. For this, we will yet again make use of regions.

Definition 16 For an automaton A, let M : X 7→ N ∪ {−∞} be the maximum bounds
function. We have seen the region equivalence v ∼M v′ in the lecture on regions. Using
this we define a simulation relation 4M . For each state q and pair of valuations v, v′, we
define:

(q, v) 4M (q, v′) if v ∼M v′

Lemma 17 The relation 4M is a finite simulation.

Proof
4M being a simulation is a consequence of the pre-stability property of regions (Lemma
10 and 13 of the notes titled “Language emptiness for timed automata”). The fact that it
is finite is because the number of regions is finite. �

In fact, 4M is also symmetric. Such a simulation is also known as bisimulation. Ex-
tending 4M to sets of valuations gives us the ClosureM abstraction.

Definition 18 (ClosureM abstraction) Let W be a set of valuations. Then:

ClosureM(W) := {v | exists v′ ∈ W s.t. v ∼M v′}

In other words, ClosureM(W) is the union of regions that intersect W .

12 Reachability algorithm using zones

Z

Mx

My

x

y

0

ClosureM (Z)

Mx

My

x

y

0

Figure 1.6: A zone and its Closure with respect to the maximum bounds Mx and My

Figure 1.6 gives an example of a zone over two clocks and its closure. The thin gray
lines give the division of the x-y plane into regions.

We are now in our last step in defining a simulation relation over sets of valuations.

Definition 19 For each state q and each pair of valuation sets W,W ′ define:

(q,W) vM (q,W ′) if W ⊆ ClosureM(W ′)

Lemma 20 The relation vM defined above is a finite simulation relation.

Proof
From Definitions 19 and 18, it is clear that for every v ∈ W , there exists a v′ ∈ W ′ such that
v ∼M v′. But then, this also means that v 4M v′ (Definition 16). Finally from Lemma 17,
we know that 4M is a simulation. Hence for every v ∈ W there exists a v′ ∈ W ′ such that
v 4M v′. Therefore, v is a simulation relation.

A region closure is a subset of regions. As the number of regions is finite, the number
of region closures is also finite. �

The above lemma and definition give us a way of plugging in a simulation relation in
Algorithm 1.2. We give the final version in Algorithm 1.3.

Example 21 We saw an automaton Ainf in Figure 1.4 for which the zone graph was
infinite. For the same automaton, Algorithm 1.3 computes a finite graph as illustrated in
Figure 1.7.

5 Summary

In this lecture, we have seen a new procedure (Algorithm 1.3) that uses special sets of valu-
ations called zones and an inclusion checking Z ⊆ ClosureM(Z ′). The correctness of this al-
gorithm follows from the general theorem about simulation relations (Theorem 15) and the
fact that the relation Z vM Z ′ if Z ⊆ ClosureM(Z ′) is a simulation relation (Lemma 20).
However, we have not given an algorithm that can compute Z ⊆ ClosureM(Z ′) efficiently.
An O(|X|2) algorithm for this problem can be found in [HSW16]. Current algorithms in
tools employ more sophisticated simulations that give much smaller truncations.

Summary 13

q0 q1

(y = 1), {y}

{x, y}

M(x) = −∞
M(y) = 1

(q0, x− y = 0)

(q1, x− y = 0)

(q1, x− y = 1)

Figure 1.7: Automaton Ainf has finite zone graph when ClosureM is used

Algorithm 1.3: Reachability procedure using ClosureM

1 Input: Timed automaton A = (Q,X = {x1, . . . , xk}, q0, T, Acc)
2 Output: Y es, when some state in Acc is reachable from q0; No otherwise
3

4 function main()
5

6 let M be the maximum bounds function for A
7

8 Waiting := ∅;
9 Passed := ∅;

10 Z0 := 0 ≤ x1 = x2 = · · · = xk
11

12 Add (q0, Z0) to Waiting
13

14 while (Waiting 6= ∅)
15 Remove (q, Z) from Waiting
16

17 if (q is accepting)
18 exit Yes
19 else if (∃ (q, Z ′) ∈ Passed s.t. Z ⊆ ClosureM (Z ′))
20 continue
21 else
22 for each (qs, Zs) s.t. (q, Z)⇒ (qs, Zs) do
23 if (Zs 6= ∅)
24 Add (qs, Zs) to Waiting
25 Add (q, Z) to Passed
26

27 return No

14 REFERENCES

References

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Lectures on Concurrency and Petri Nets, pages 87–124. Springer, 2004.

[Dil90] David L Dill. Timing assumptions and verification of finite-state concurrent
systems. In Automatic verification methods for finite state systems, pages 197–
212. Springer, 1990.

[HSW16] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better abstractions
for timed automata. Inf. Comput., 251:67–90, 2016.

[ZLZ05] Jianhua Zhao, Xuandong Li, and Guoliang Zheng. A quadratic-time dbm-based
successor algorithm for checking timed automata. Information processing letters,
96(3):101–105, 2005.

	Reachability algorithm using zones
	Zones
	A naive reachability algorithm
	Finite abstractions of the zone graph
	Simulations from the region equivalence
	Summary

