This implies: $R_{ox} \leq (\leq, M_{a})$ Adding Zno to both sidu: $Rox + Zxo \leq (\leq, Ma) + Zxo$ As ROZ =6, the yell Rox + Zxo in min (Gr, Grz) is non-negative. $(\leq, \circ) \leq \Re_{0\times} + Z_{\times 0}$ This give: $(\leq, 0) \leq (\leq, M_x) + Z_{x_0}$ (condition ()). To show Q: We have $(\leq, 0) \leq Z_{xy} + R_{yx}$ as $R_{0}Z \neq \phi$ $Z'_{xy} + R_{yx} < (\leq, 0)$ by hypothesis. Adding: Z'xy < Zxy (condition 3) To show (3): kle will distinguish between two cases. either y & Bounded (R) or y & Bounded (R). We start with the second case.

$$\begin{array}{rcl} \underline{Caue:} & y \notin \underline{Bounded}(R): \\ \hline R_{yx} &= (<, -M_{y}) + R_{0x} & (by definition of GR) \\ & [notice that x could as well \\ & bx the 0 vorticite, in \\ & which cane the have $R_{00} = (\leq, 0)$] \\ \hline Z'_{xy} + R_{yx} &< (\leq, 0) & by hypothesis. \\ \hline Z'_{xy} + (<, -M_{y}) + R_{0x} < (\leq, 0) \\ & (\leq, 0) \leq R_{0x} + Z_{x0} & as Rn z \pm ij \\ \hline Adding: & Z'_{xy} + (<, -M_{y}) < Z_{x0} & (condition D) \\ \hline Cose(y \in Bounded(R)) \\ & (<, -M_{y}) < R_{y0} & (as y \in Bounded(R)) \\ & R_{y0} \leq R_{yx} + R_{x0} & (as G_{R} is canonical) \\ & Z'_{xy} + Ryx < (\leq, 0) & (by hypothesis) \\ & R_{x0} \leq Z_{x0} & (as we will show [ater]) \\ & R_{x0} \leq Z_{x0} & (condition 3) \\ \hline Remaine to show R_{x0} \leq Z_{x0}. \end{array}$$

To show: $R_{xo} \leq Z_{xo}$ Suppose $R_{K0} = (\leq, -c)$ Then $Rox = (\leq, c)$ We know: $(\leq, o) \leq Z_{xo} + R_{ox}$ $(\epsilon, \qquad (\leq, \circ) \leq Z_{xo} + (\leq, c)$ Adding (<,-c) on both sides: $(\leq, -c) \leq Z_{xo}$ [done] Suppose: $R_{xo} = (\langle , -c \rangle)$. Then $R_{0x} = (\langle , c+1 \rangle)$ We know: $(\leq, o) \leq Z_{\times o} + R_{o \times o}$ i_{e_1} $(\leq_1 0) \leq Z_{\times 0} + (<, C_{+1})$ Suppose $Z_{x0} = (\triangleleft, c_{x0})$ where $\triangleleft \in \{\leq, \leq\}$ he have: $(\leq, 0) \leq (d, c_{xy}) + (d, ct)$ $i_{k_1} \quad (\leq, 0) \leq (<, c_{k_0} + c_{+1}) \longrightarrow \textcircled{3}$ Recall the ordering on weights: (<10) (<11) (<11) Since the RHS of (*) has strict inequality < , we also have: $(<_{1}) \leq (<, c_{x0} + c + i)$

We have shown. $(<, 1) \leq (<, c_{x0} + c_{+1})$ Adding (<, -c-1) to both sides: $(<, -c) \leq (<, c_{xo})$ $\therefore \quad (<, -c) \leq (<, c_{x0}) < (\leq, c_{x0})$ by ordering on weight (<, -c) < Zxo no matter what => a is. (reall Zxo= (9, cxo)) $i_{\ell}, R_{xo} \leq Z_{xo}$

Box 3.2: From the test to a negative cycle.
Given:
$$\exists x_{i}y \in x \cup \sum 0$$
; si:
-1. $Zx_{0} + (\leq, M_{n}) \neq (\leq, 0)$ and
-2. $Z'xy < Zxy$ and
-3. $Z'xy + (<, -My) < Zx_{0}$
To show:
 $\exists R. R \cap Z \neq \emptyset$ and $\exists x_{i}y \in x \cup \sum s$.
 $Z'xy + Ry_{x} < (\leq, 0)$
Proof: We will do a cose distinction depending on the
inequality present in Zx_{0} and Zxy .
Case 1: $Z_{X0} = (\leq, -C)$, $Zxy = (\leq, e)$
Case 2: $Zx_{0} = (<, -C)$, $Zxy = (<, e)$
Case 3: $Zx_{0} = (<, -C)$, $Zxy = (<, e)$
Case 4: $Zx_{0} = (<, -C)$, $Zxy = (<, e)$
We will describe Cases 1 and 2. The other two are left as
an afterwise.
Moreover, we will assume that $x_{i}y \in X$, that is, neither in either inequality.

Case 1:
$$Zx_0 = (\leq, c)$$
 and $Zx_0 = (\leq, c)$
 $x_0^{+4^{\pm}}$
 z' Consider the point v marked with
the base dot.
 $v(x) = c$, $v(y) = c$
 $x \ge c$
We cloth that the region containing v withous a negative cub with z' .
det R be the region containing v .
 $-\frac{claim t}{x} \in Bounded (R)$.
By (1), $Zx_0 + (\leq, M_x) \ge (\leq, 0)$
 $\therefore (\leq, -c) + (\leq, M_x) \ge (\leq, 0)$
 $\therefore (\leq, -c + M_x) \ge 0$
 \Rightarrow $C \le M_x$. u
 $z = v$ can either be bounded or not.

Suppose y is bounted then R will be:

$$(\leq, e+e^{2})$$

$$(\leq, e-e^{2})$$

$$(\leq, -e^{2})$$

$$Ry_{x} = (\leq, -e^{2})$$

$$Ry_{x} = (\leq, -e^{2})$$

$$Ry_{x} = (\leq, -e^{2})$$

$$Ry_{x} = (\leq, -e^{2})$$

$$Z'_{xy} + (\leq, -e^{2}) < (\leq, e^{2})$$

$$Z'_{xy} + (\leq, -e^{2}) < (\leq, 0) \quad (done)$$
Suppose y is not bounded. Then R will be:

$$(\leq e^{2})$$

$$Q'_{xy} = (<, -My^{+}e^{2})$$

$$Ry_{x} = (<, -My^{+}e^{2})$$

$$Ry_{x} = (<, -My^{+}e^{2})$$

$$Ry_{x} = (<, -My^{+}e^{2})$$
From (3)
$$Z'_{xy} + (<, -My^{+}e^{2}) < (\leq, 0)$$

Cove z:
$$Z_{X0} = (<, -c), \quad Z_{Xy} = (<, e)$$

 $y_{1,x} \neq e$
Conside the point
 e
 $x = c + y_{2}$
 $y = e + c$
 $x > e$
-Claim: There exists $\forall e \neq st. \quad \forall(x) = c + 1/2$
 $\forall(y) = e + c$
To prove this, we will show that min (G, G_{12}) has no megative cyclus
where G is:
 $(\leq, e+c)$
 (f)
 (f)

Now, we will show that the region containing v will
wathshy
$$Z'_{xy} + R_{yx} < (\leq, o)$$
.
At in case 1, we can show that x is bounded.
Suppose y is bounded: it, $e + c \leq My$.
The region R will look like:
 $(\leq, e+c)$
 $< c+1$ $(<, e)$
 $(<, e-c)$
 $(<, -e+1)$
 $(<, -e-c)$
 $(Recall that both)$
 $(<, -e-c)$
 $(<, -e-c)$
 $(Recall that both)$
 $(<, -e-c)$
 $(Reca$