Part 3.1: From negative cycle to the test
Recall that:
$z \not \neq m^{\prime} 2^{\prime} \Leftrightarrow \exists R . \quad R \cap z \neq \phi$ and $R \cap z^{\prime}=\phi$
$\Leftrightarrow \quad \exists R . \quad R \cap z \neq \phi$ and $\exists x, y \in X \cup\{0\}$ st.

$$
z_{x y}^{\prime}+R_{y x}<(\leqslant, 0)
$$

(from previous proposition)

Now, we will show one side of the main theorem:
$\exists R . R \cap z \neq \varnothing$ and $\exists x, y \in x \cup\{0\}$ st.

$$
\begin{aligned}
& \quad Z_{x y}^{\prime}+R_{y x}<(\leqslant, 0) \\
& \Rightarrow \exists x, y \in x \cup\{0\} \text { st. } \\
& -1 . Z_{x 0}+\left(\leqslant, M_{x}\right) \geqslant(\leqslant, 0) \text { and } \\
& -2 . Z_{x y}^{\prime}<Z_{x y} \text { and } \\
& -3 . Z_{x y}^{\prime}+\left(<,-M_{y}\right)<Z_{x 0}
\end{aligned}
$$

Proof: Let R be st. $R \cap z \neq \phi$ and $R \cap z^{\prime}=\phi$.
To show (1.)

Since $z_{x y}^{\prime}+R_{y x}$ is negative, $R_{y x} \neq(<, \infty)$
$\Rightarrow x \in$ Bounded (R) (recall that there are no incoming edges to unbounded clocks in R, that is, incoming edges to unbid. clocks have $\begin{gathered}(<, \infty) \\ \text { weight })\end{gathered}$ weight?

This implies: $\quad R_{0 x} \leqslant(\leq, M x)$

Adding $Z_{n_{0}}$ to
both side: $\quad R_{0 x}+Z_{x 0} \leqslant\left(\leqslant, M_{x}\right)+Z_{x_{0}}$

As $R \cap z \neq \phi$, the cycle $R o x+Z_{x_{0}}$ in $\min \left(G_{R}, G_{2}\right)$ is non-negative.

$$
\therefore \quad(\leqslant, 0) \leqslant R_{0 x}+z_{x 0}
$$

This give: $(\leqslant, 0) \leq\left(\leq, M_{x}\right)+Z_{x 0} \quad$ (condition (1)).

To show (2):
We have $(\leqslant, 0) \leqslant Z_{x y}+R_{y x}$ as $R \cap z \neq \phi$

$$
z_{x y}^{\prime}+R_{y x}<(\leqslant, 0) \quad \text { by hypothesis. }
$$

Adding:

$$
z_{x y}^{\prime}<z_{x y} \quad(\text { condition }(2)
$$

To show (3):

We will distinguish between two cases:
either $y \in$ Bounded (R) or $y \notin$ Bounded (R).
We start with the second case.

Case: $y \notin$ Bounded (R):
$R_{y x}=\left(<,-M_{y}\right)+R_{0 x} \quad$ (by definition of $\left.G_{R}\right)$
[notice that x could as well be the 0 variable, in which case we have $R_{\infty}=(\leqslant, 0)$]

$$
\begin{aligned}
& Z_{x y}^{\prime}+R_{y x}<(\leqslant, 0) \text { by hypothesis. } \\
& \therefore Z_{x y}^{\prime}+\left(<,-M_{y}\right)+R_{0 x}<(\leqslant, 0) \\
&(\leqslant, 0) \leqslant R_{0 x}+Z_{x 0} \text { as } R \cap z \neq \phi
\end{aligned}
$$

Adding: $Z_{x y}^{\prime}+\left(<,-M_{y}\right)<Z_{x 0} \quad$ (condition (3))

Caver $y \in$ Bounded (R):

$$
\left.\left(<,-M_{y}\right)<R_{y o} \quad \text { (as } y \in \text { Bounded }(R)\right)
$$

$R_{y 0} \leq R_{y x}+R_{x 0} \quad$ (as G_{R} is canonical)

$$
Z_{x y}^{\prime}+R_{y x} \quad<\quad(\leqslant, 0) \quad \text { (by hypothesis) }
$$

$R_{x_{0}} \leqslant z_{x_{0}}$ (as we will show (after)

Adding: $\quad Z_{x y}^{\prime}+\left(<,-M_{y}\right)<Z_{x 0} \quad$ (condition 3)

Remains to shove $R_{x 0} \leq Z_{x 0}$.

To show: $\quad R_{x 0} \leq Z_{x 0}$

Suppose $R_{x 0}=(\leq,-c)$ Then $R_{0 x}=(\leq, c)$

We know: $\quad(\leqslant, 0) \leqslant Z_{x 0}+R_{0 x}$
ie., $\quad(\leqslant, 0) \leqslant Z_{x_{0}}+(\leqslant, c)$

Adding $(\leqslant,-c)$ on both sides:

$$
(\leqslant,-c) \leqslant z \times 0 \quad[\text { done }]
$$

Suppose: $R_{x 0}=(<,-c)$. Then $R_{0 x}=(<, c+1)$

We know: $(\leq, 0) \leq Z_{x 0}+R_{0 x}$
ie., $\quad(\leq, 0) \leq z_{x_{0}}+(<, c+1)$

Suppose $Z_{x_{0}}=\left(\varangle, c_{x_{0}}\right)$ where $\varangle \in\{<, \leqslant\}$

We have. $\quad(\leqslant, 0) \leqslant\left(\varangle, c_{x 0}\right)+(<, c+1)$
ie,, $\quad(\leqslant, 0) \leqslant\left(<, c_{x 0}+c+1\right)$

Recall the ordering on weights:

Since the RHS of \circledast has strict inequality $<$, we also have:

$$
(<, 1) \quad \leq \quad\left(<, c_{x_{0}}+c+1\right)
$$

We have shown:

$$
(<, 1) \leqslant\left(<, \quad c_{x 0}+c+1\right)
$$

Adding $(<,-c-1)$ to both sides:

$$
\begin{aligned}
(<,-c) & \leqslant\left(<, c_{x 0}\right) \\
\therefore \quad & (<,-c)<\left(<, c_{x 0}\right)<\left(\leqslant, c_{x 0}\right)
\end{aligned}
$$

by ordering on weights
$\Rightarrow \quad(<,-c) \quad$ Zoo no matter what \triangle is.
(recall $\left.Z_{x_{0}}=\left(4, c_{x_{0}}\right)\right)$
ie., $R_{x_{0}} \leq Z_{x_{0}}$.

Alternate elegant proof given by Niranjan for this case:
Case: $\quad y \in$ Bounded (R)

$$
\begin{aligned}
& R_{y 0} \leqslant R_{y x}+R_{x 0} \\
&\left.R_{0 x}+R_{x_{0}} \leqslant(<, 1) \quad \text { (by canonicity of } G_{R}\right) \\
& z_{x y}^{\prime}+R_{y x}<(\leqslant, 0)
\end{aligned}
$$

Adding all three:

$$
z_{x y}^{\prime}+R_{0 x}+R_{y_{0}}<(<11)
$$

$\Rightarrow \quad z_{x y}^{\prime}+R_{0 x}+R_{y 0} \leq(\leq, 0) \quad$ [due to ordering on weight $]$

$$
\begin{aligned}
& (\leqslant, 0) \leqslant R_{0 x}+z_{x 0} \quad[\text { as } R \cap z \neq \phi] \\
& \left(<,-M_{y}\right)<R_{y 0} \quad[\text { as } y \in \text { Bounded }(R)]
\end{aligned}
$$

Adding (1), (2), (3) give:

$$
Z_{x y}^{\prime}+\left(<,-M_{y}\right)<Z_{x 0}
$$

Part 3.2: From the test to a negative cycle.
Given: $\quad \exists x, y \in \times \cup\{0\} \quad$ st.
-1. $Z_{x_{0}}+\left(\leqslant, M_{x}\right) \geqslant(\leqslant, 0)$ and
-2. $z_{x y}^{\prime}<z_{x y}$ and
$-3 . \quad z_{x y}^{\prime}+\left(<,-M_{y}\right)<Z_{x 0}$
To show:
JR. $R \cap z \neq \varnothing$ and $\exists x, y \in X \cup\{0\}$ st.

$$
z_{x y}^{\prime}+R_{y x}<(\leq, 0)
$$

Proof: We will do a case distinction depending on the inequality present in $Z_{x 0}$ and $Z_{x y}$.

Case 1: $\quad Z_{x 0}=(\leqslant,-c), \quad Z_{x y}=(\leq, e)$
Case 2: $Z_{x 0}=(<,-c), \quad Z_{x y}=(<, e)$
Case 3: $\quad Z_{x 0}=(<,-c), \quad z_{x y}=(\leqslant, e)$
Case 4: $Z_{x 0}=(\leqslant,-c), \quad Z_{x y}=(<, e)$

We will describe Cases 1 and 2 . The other two are left as an exercise.

Moreover, we will assume that $x, y \in X$, that is, neither x nor y is 0 . The case where one of them is 0 can be argued similarly.

Case 1: $\quad Z_{x 0}=(\leqslant, c)$ and $Z_{x y}=(\leqslant, e)$

Consider the point v marked with the blue dot.

$$
v(x)=c, \quad v(y)=e
$$

$$
x \geqslant c
$$

We claim that the region containing v witnesses a negative cycle with z^{\prime}.
Let R be the region containing v.

- Claim 1: $\quad x \in \operatorname{Bounded}(R)$.

By (1), $\quad Z_{x 0}+\left(\leq, M_{x}\right) \geqslant(\leq, 0)$

$$
\begin{aligned}
& \therefore(\leqslant,-c)+\left(\leqslant, M_{x}\right) \geqslant(\leqslant, 0) \\
& \therefore \quad(\leqslant,-c+M x) \geqslant 0 \\
& \Rightarrow \quad C \leqslant M_{x} .
\end{aligned}
$$

- y can either be bounded or not.

Suppose y is bounded. Then R will be:

$$
R_{y x}=(\leqslant,-e)
$$

We know: $\quad Z_{x y}^{\prime}<z_{x y}=(\leqslant, e)$

$$
\therefore \quad z_{x y}^{\prime}+(\leqslant,-e) \quad<(\leqslant, 0) \quad \text { (done) }
$$

Suppose y is not bounded. Then R will be:

$$
R_{y x}=\left(<,-M_{y}+c\right)
$$

From (3): $\quad z^{\prime} x y+\left(<,-M_{y}\right)<z_{x 0}$
ie., $\quad z_{x y}^{\prime}+\left(<,-M_{y}\right)<(\leqslant, c)$
Adding $(\leqslant,-c): \quad z_{x y}^{\prime}+\left(<,-M_{y}+c\right)<(\leqslant, 0)$

$$
\Rightarrow \quad z^{\prime} x y+R_{y x}<(\leq, 0)
$$

Case 2: $\quad Z_{x 0}=(<,-c), \quad Z_{x y}=(<, e)$

Consider the point

$$
\begin{aligned}
& x=c+1 / 2 \\
& y=e+c
\end{aligned}
$$

$$
x>c
$$

- Claim: There exists $v \in z$ st.

$$
\begin{aligned}
& v(x)=c+1 / 2 \\
& v(y)=e+c
\end{aligned}
$$

To prove this, we will show that $\min \left(G, G_{2}\right)$ has no negative cycles where G is:

It is sufficient to show the following cycles are non-negative
i) $(\leqslant, c+1 / 2)+Z_{x 0}$
ii) $Z_{0 x}+(\leqslant,-c-1 / 2)$
iii) $(\leq, e+c)+z_{y_{0}}$
iv) $\quad z_{0 y}+(\leqslant,-e-c) \quad$ (Exercise)
v) $\quad(\leq, c+1 / 2)+Z_{x y}+(\leqslant,-e-c)$
vi) $(\leqslant, e+c)+z_{y x}+(\leqslant,-c-1 / 2)$

Now, we will show that the region containing v will satisfy $Z_{x y}^{\prime}+R_{y x}<(\leqslant, 0)$.

As in case 1, we can show that x is bounded.

Suppose y is bounded: ie., $e+c \leqslant M y$

The region R will look like:

(Recall that both

$$
(\leqslant,-e-c)
$$ e and c are integers, and hence this is the region).

$$
R_{y x}=(<,-e+1)
$$

We know: $z_{x y}^{\prime}<\underline{z}_{x y}=(<, e)$ (from (2))

$$
\therefore \quad z!x y \quad \leq \quad(\leq, e-1)
$$

Adding Rya:

$$
\begin{aligned}
& z_{x y}^{\prime}+(<,-e+1) \leq(<, 0) \\
\Rightarrow & z_{x y}^{\prime}+R_{y x}<(\leqslant, 0) \quad \text { [negative cycle] }
\end{aligned}
$$

