
Party : Proof of the final test

We have already seen that :

2 Elm 2
'

if F an M-

region R s - t .

Rn 2=1 of and Rnz'=§

Our first step would be to understand when Rnz
'

is empty .

When is Rnz' empty ?

R is some arbitrary M- region and 2
'

is a non - empty zone .

Let us first look at the canonical distance graph Gp representing R .

Define

Bounded IR) = { 0} U { ✗ c- ✗ I
every valuation in R

satisfies NS Mn }

Notice that t.me have added { 0 } to Bounded IN , as this

will help avoid separate arguments for the 0 - variable .



Here is a distance graph for R :
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This graph may not be canonical .



the canonical version of the graph just defined will have

the following additional edges :
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Let Gp be the canonical distance graph Of R , as defined in

the previous two pages .

Here are two useful properties of Gpr that we will use crucially .

L-emm.ci. Let Ni , nz C- Bounded CR) . Then weight of the cycle

✗ , z

in Gp is either (E. 0) or ( < , 1)
.

Lemma:
-

GR has no incoming edges to variables y¢ Bounded IR)

Proof of the above two lemmas simply follows by definition .
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Proposition :
-

Let R be an M - region , and 2
'
a non- empty zone .

R n z
'

= of Iff there exist two variables Nig c- ✗ v3.03 s- t .

Z '×y + Ryx C CE , 0)

where 2'×y is the weight of ✗ → y in the canonical distance

graph Gz, of 2
'

Ryx is the weight of y→✗ in the canonical distance

graph Gr Ot R

Proof :
-

Consider min (GR
,
Gzi) . We know that

Rnz '
is empty iff min ( GR , Gz, ) has a negative cycle .

The proposition claims that we can find a small negative cycle :

Z'xy

y

in min ( GR , Gz , ) where weight of ✗ → y comes from

Gz, and weight of y - ✗ comes from GR .

RiÉ-dIn : suppose the rhs of the proposition is true
.

This means there is a negative cycle
in min CGR , Gzi ) .

Hence

R n 2
'
= § .



Left-to-right direin:

Assume Rnz' =D .

Then min ( GR
, Gz . ) has a negative cycle .

- Let N be a negative cycle in min CGR
,
Gail . He

will reduce N to the required form step by step .

Convention we will colour edges coming from GR with red

and edges coming from G with blue .

2
'

steps: since GR , Gz, are canonical
, any consecutive occurrences

of red or blue edges can be replaced by a single
direct edge from source to target , that has smaller or

equal weight .

• -7 0→ •

I,
-•
→ •

uzUt Uz Uz Uz

ti
ti

I
,

- •

u, th
- •

43

Therefore we can assume that red & blue edges alternate

in N
.

N :
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¥02: We will now reduce N so that it contains

at most 2 variables N, , Nz c- Bounded IR) . Moreover

Ui and Na are connected by a direct red edge :

To show , N looks like : §-0×2

W
gray part has no variables from

Bounded ( R )
.

Pr_0of :

Suppose N Contains two variables × , , ✗a
C- Bounded LR) :

X ,

C
"

] Ra
P2

,
• G
✗
z

Let Piz be the sequence of edges ( possibly a single edge )
from ✗ , to Xz in N .

pz, be the sequence of edges ( possibly a single one )

from Xz to ×
,

in N .

Let weight of Piz be Wiz

and weight of Pz, be V21
.



In GR ; we have ×;
•

✗a

V2

kith 8, + rz = CE , 0) or

ri + ra = ( < , 1) ( as recorded in

a previous lemma)

suppose ri f w ,
,

then

✗ ,

is a negative cycle .C.÷.Pz
,

Else : w , < V1

i. W , 1- V2 < 8, + rz

When r, + rz = ( 5,07
,

we get Wi + ra < ( 5,07

When r, + rz = (< , , ) , we get w, + ra s e < in

⇒ Wi + ra £ ( E ,O)

But
, in this case rz is of the form ( < , e)

d

strict inequality

a- . Wit ra is of the form ( <
,
f)

⇒ WI + rz < IS
,
0)



It
: .

rfg) Piz is a negative cycle .

Either way , we have seen that we get a negative cycle
where × , , ✗ 2 are connected by a direct edge .

If there are more bounded variables ( say in f, or Pr?
We can repeat this argument , each time eliminating a
bounded variable , to finally get a negative cycle that looks like :

✗ 1

,→ •

✗2

Where ✗ , , Xi C- Bounded 427

0 and the rest of the

Variables are not in

Bounded (R) .



step-I.me will now show that there can be at most one

"
unbounded " Variable in N .

Suppose y ¢ Bounded CR) and y is present in N .

Ci) We have seen that in GR ,
the only edges involving yare

of the form :

✗

•c- •

y

llvhere ✗ c- Bounded IR) .

Iii ) From step 1 , red and blue edges alternate in N .

From ci) and Cii )
,

if y is present in N
, then

:#÷

the incoming edge to
y is blue

,
and outgoing edge

is red

going to a bounded variable .



Recall that
,

from step 2 , N looks like:

✗ 1 To ✗z

v# no bounded variables
.

If y is in the
grey part , then the outgoing red edge

from
y has to go to either ✗ i or ✗a .

✗ I o→ • ✗2 ✗1
, •

✗2

1 Or

g) e g
But as there are no consecutive red edges , it can only be the

second option .

p
'

The grey part does not contain bounded .
variables ( step 2)

If P
'

contains an unbounded variable
y
'
(other than y ) , then

we can apply the same argument as we did with y to

get a direct edge y
' to Xz .

This mill eliminate
y

from 14 .

- :

1k110g , N looks like :
y • • ✗



In
summary ,

either N has no unbounded rxariables
,
in xrxhich case

step 2 gives a negative cycle :

✗Y •

Xz

or N Contains at least one unbounded variable
,

in which case step 2 and step 3 together give a

negative cycle :

y

•

✗

This proves the proposition .

Remain:

The above proposition shows that :

R n z = of Iff 7k1g c- ✗ v90} sit .

Projny (R )
n Projnylz

' ) = §

Where Projnylsl denotes the projection of
s in the

xy plane .


