Part 3: Proof of the final test

We have already seen that:
$z \not_{M} z^{\prime}$ if \exists an M-region R st.
$R \cap z \neq \phi$ and $R \cap z^{\prime}=\phi$

Our first step would be to understand when $R \cap z^{\prime}$ is empty.
When is $R \cap z^{\prime}$ empty?
R is some arbitrary M-region and Z^{\prime} is a non-empty zone.
Let us first look at the canonical distance graph G_{R} representing R.
Define

Bounded $(R)=\{0\} \cup\{x \in X \mid$ every valuation in R satisfies $\left.x \leqslant M_{x}\right\}$

Notice that we have added $\{0\}$ to Bounded (R), as this will help avoid separate arguments for the 0 -variable.

Here is a distance graph for R :

- $\forall x \in$ Bounded $(R) \cap x$ st. $\quad x=c \quad$ for some $c \leq M_{x}$

- $\quad \forall x \in$ Bounded (R) $\cap x$ st. $c<x<c+1$ for some $c<M_{n}$
- $\forall x_{1}, x_{2} \in$ Bounded (R) sit. $c_{1}<x_{1}<c_{1}+1$ \&

$$
c_{2}<x_{2}<c_{2}+1
$$

one of the following combinations

$-\quad \forall x \notin$ Bounded (R)
0°

$$
y
$$

$$
\left(<,-M_{y}\right)
$$

This graph may not be canonical.

The canonical version of the graph just defined will have the following additional edges:

- for all $x_{1}, x_{2} \in$ Bounded (R) sit. $0^{\circ} \frac{\leq c_{1}}{\frac{s-c_{1}}{<}} \cdot x_{1}$
we hove:

- for $y \notin \operatorname{Bounded}(R), \quad x \in \operatorname{Bounded}(R) \backslash\{0\}$

$$
\dot{x}
$$

$$
\cdot y
$$

where $(\varangle, \omega)=\left(<,-M_{y}+c\right)$, if weight of $0 \rightarrow x$ is $\left(\Delta_{1}, c\right)$ (br. of $y \rightarrow 0 \rightarrow x$)

Let G_{R} be the canonical distance graph of R, as defined in the previous two pages.

Here are two useful properties of G_{R} that we will use crucially.
Lemma: Let $x_{1}, x_{2} \in$ Bounded (R). Then weight of the cycle

$$
x_{1} \quad x_{2}
$$

in G_{R} is either $(\leqslant, 0)$ or $(<, 1)$.

Lemma: GR has no incoming edges to variables $y \notin$ Bounded (R)

Proof of the above two lemmas simply follows by definition.

Example:

Blue region:

Orange region:

Vide region:

Proposition: Let R be an M-region, and z^{\prime} a non-empty zone.
$R \cap z^{\prime}=\varnothing$ iff there exist two variables $x, y \in X \cup\{0\}$ st.

$$
z_{x y}^{\prime}+R_{y x}<(\leq, 0)
$$

where $z_{x y}^{\prime}$ is the weight of $x \rightarrow y$ in the canonical distance graph G_{2}, of 2^{\prime}

Rya is the weight of $y \longrightarrow x$ in the canonical distanu graph G_{R} of R

Proof: Consider $\min \left(G_{R_{1}}, G_{z^{\prime}}\right)$. We know that
$R \cap z^{\prime}$ is empty iff $\min \left(G_{R_{1}} G_{z^{\prime}}\right)$ has a negative cycle.
The proposition claims that we can find a small negative cycle:

in $\min \left(G_{R}, G_{z^{\prime}}\right)$ where weight of $x \rightarrow y$ comes from
$G_{z^{\prime}}$ and relight of $y \rightarrow x$ comes from G_{R}.
Right-to-left direction: suppose the ohs of the proposition is true.
This means there is a negative cycle in $\min \left(G_{R}, G_{Z^{\prime}}\right)$. Hence $R \cap z^{\prime}=\phi$.

Left - to -right direction:

Assume $R \cap z^{\prime}=\phi$. Then $\min \left(G_{R}, G_{z^{\prime}}\right)$ has a negative cycle.

- Let N be a negative cycle in $\min \left(G_{R}, G_{z^{\prime}}\right)$. We will reduce N to the required form step by step.

Convention: We will colour edges coming from G_{R} with red and edges coming from G_{2}, with blue.

Step 1: Since G_{R}, G_{2} are canonical, any consecutive occurrences of red or blue edges can be replaced by a single direct edge from source to target, that has smaller or equal weight.

Therefore we can assume that red \& blue edges alternate in N.
$N:$

Step 2: We will now reduce N so that it contains at most 2 variables $x_{1}, x_{2} \in$ Bounded (R). Moreover x_{1} and x_{2} are connected by a direct red edge:

To show, N looks like:

gray part has no variables from Bounded (R).
Proof:
Suppose N contains two variables $x_{1}, x_{2} \in \operatorname{Bounded}(R)$:

Let P_{12} be the sequence of edge (possibly a single edge) from x_{1} to x_{2} in N.
ρ_{21} be the sequence of edges (possibly a single one) from x_{2} to x_{1} in N.

Let weight of ρ_{12} be w_{12}
and weight of ρ_{21} be w_{21}.

In G_{R}; we have

with $r_{1}+r_{2}=(\leqslant, 0)$ or
$r_{1}+r_{2}=(<, 1)$ (as reworded in a previous lemma)

Suppose $r_{1} \leqslant w_{1}$, then

is a negative cycle.

Else:

$$
\begin{aligned}
& w_{1}<r_{1} \\
& \therefore w_{1}+r_{2}<r_{1}+r_{2}
\end{aligned}
$$

When $r_{1}+r_{2}=(\leqslant, 0)$, we get $w_{1}+r_{2}<(\leqslant, 0)$
When $r_{1}+r_{2}=(<, 1)$, we get $\omega_{1}+r_{2}<(<, 1)$

$$
\Rightarrow \quad \omega_{1}+r_{2} \leqslant(\leqslant, 0)
$$

But, in this case r_{2} is of the form $(<, e)$ strict inequality
$\therefore \quad w_{1}+r_{2}$ is of the form $(<, f)$

$$
\Rightarrow \quad w_{1}+r_{2}<(\leq, 0)
$$

ρ_{12} is a negative cycle.

Either way, we have seen that we get a negative cycle where x_{1}, x_{2} are connected by a direct edge.

If there are more bounded variables (say in $\rho_{<1}$ or ρ_{12}), we can repeat this argument, each time eliminating a bounded variable, to finally get a negative cycle that looks like:
 where $x_{1}, x_{2} \in \operatorname{Bounded}(R)$ and the rest of the variable e are not in Bounded (R).

Step 3: We will now show that there can be at most one "unbounded" variable in N.

Suppose $y \notin$ Bounded (R) and y is present in N.
(i) We have seen that in GR, the only edges involving y are of the form:

Where $\quad x \in$ Bounded (R).
(ii) From Step 1, red and blue edges alternate in N.

From (i) and (ii), if y is present in N, then

the incoming edge to y is blue, and outgoing edge is red going to a bounded variable.

Recall that, from Step 2, N looks like:

If y is in the gray part, then the outgoing red edge from y has to go to either x_{1} or x_{2}.

But as there are no consecutive red edges, it can only be the second option.

The grey part ρ^{\prime} does not contain bounded variables (step 2)
If ρ^{\prime} contains an unbounded variable y^{\prime} (other than y), then we can apply the same argument as we did with y to get a direct edge y^{\prime} to x_{2}. This will diminate y from N.
\therefore Wlog, N looks like:

In summary,
either N has no unbounded variables, in which case Step 2 gives a negative cych:

or N contains at least one unbounded variable, in which case step 2 and Step 3 together give a negative cycle:

This proves the proposition.

Remark:

The above proposition shows that:

$$
R \cap z=\phi \text { ff } \exists x, y \in X \cup\{0\} \text { sit. }
$$

$$
\operatorname{Proj}_{x y}(R) \cap \operatorname{Proj}_{x y}\left(z^{\prime}\right)=\varnothing
$$

Where $P_{r o j x y}(S)$ denotes the projection of S in the my plane.

