A SIMULATION TEST BETWEEN ZONES

Problem: Given two zones z and z^{\prime}, we want to check if every region that intersects z, also intersects z^{\prime}.

The goal of these notes is to provide an algorithm for the above problem, which suns in time $O\left(|x|^{2}\right)$ where x is the set of clocks.

- As seen in a previous lecture, this test can be used in the reachability algorithm to ensure correctness and termination of the zone enumeration.
- A preliminary version of this test appears in the following paper:

Using non-convex approximations for efficient analysis of timed automata

- Herbretean, Kini, Srivathsan, Walukiewicz

FStTCS' II

- The test has been polished and extended to several settings since then.

Plan:
-1. Some definitions, and the actual test
-2. Illustration of the test on some examples
-3. Proof of correctness

Part 1: Some definitions and the actual test

Fix a set of clocks x

Bounds function: A bounds function $M: X \rightarrow \mathbb{N}$ associates a natural number to each clock.

For convenience, we will write M_{x} for $M(x)$, where $x \in X$.

Region equivalence: Given a bounds function M. We say

$$
v \simeq_{M} \quad v^{\prime} \quad \text { if }
$$

1. $\quad \forall x \in X: \quad v(x) \leq M_{x}$ if $\quad v^{\prime}(x) \leq M x$
2. $\forall x \in X \quad$ st. $v(x) \leqslant M_{x}$:

$$
\begin{gathered}
\lfloor v(x)\rfloor=\left\lfloor v^{\prime}(x) \mid\right. \\
\{v(x)\}=0 \quad \text { iff } \quad\left\{v^{\prime}(x)\right\}=0
\end{gathered}
$$

3. $\forall x, y \in X$ st. $v(x) \leqslant M_{x}$ and $v(y) \leqslant M_{y}$:

$$
\{v(x)\} \leqslant\{v(y)\} \quad \text { iff } \quad\left\{v^{\prime}(x)\right\} \leqslant\left\{v^{\prime}(y)\right\}
$$

We will call the equivalence classes of \simeq_{M} as M-regions.
Sometime, we will simply write regions when M is deal from the context.

Exercise: Let $v \simeq_{M} v^{\prime}$, and $x_{1} y \in x$ sit. $v(x) \leqslant M_{x}, v(y) \leqslant M_{y}$
Show that: (i) $\{v(x)\}<\{v(y)\} \Leftrightarrow\left\{v^{\prime}(x)\right\}<\left\{v^{\prime}(y)\right\}$
(ii) $\{v(x)\}=\{v(y)\} c=, \quad\left\{v^{\prime}(x)\right\}=\left\{v^{\prime}(y)\right\}$

Representing zones:
Recall that zones are sets of valuations represented using conjunctions of constraint of the form:

$$
x \sim c \quad \text { and } \quad x-y \sim c \quad \text { where } \sim \in\{<, \leq, \geq, \geqslant\}
$$

In this document we will assume $c \in$

We will represent zones using distance graphs. Here is an example.

$$
\begin{aligned}
x & \geqslant 1 \\
y-x & \leqslant 1 \\
y & \wedge \\
x & \wedge \\
x-y & \wedge \\
y & \wedge
\end{aligned}
$$

Distance graphs:

A distance graph has vertices $\{0\} u x$.
Edge are directed and carry a weight of the form:

$$
(<, c) \quad \cup\{(<, \infty)\}
$$

where $c \in \mathbb{Z}$ and $\varangle \in\{<, \leqslant\}$

$$
x \xrightarrow{\Delta c} y \quad \text { represents } y-x \Delta c
$$

Above example gives a zone and its distance graph.
For a distance graph G, we define: $[\mid G \rrbracket=\{v \mid v$ satisfies $y-x \Delta c$ for every $x^{\Delta c} y$ in G_{3}

Arithmetic on weights:

We want to be able to manipulate conjunctions of constraints using distance graphs.

For example:

$$
\begin{aligned}
& x-y \leqslant 5 \\
& y-\omega \leqslant 2
\end{aligned}
$$

implies $\quad x-\omega \leqslant 7$
whereas:

$$
\begin{aligned}
& x-y \leq 5 \\
& y-\omega<2
\end{aligned}
$$

implies $\quad x-w<7$

At the level of graphs, if we have:

We should derive an edge $\omega \longrightarrow x$ with weight ≤ 7.

- This first calls for the definition of an addition over these weight.
Let $c_{1} c_{1}, c_{2} \in \mathbb{Z}, 4_{1} \Delta_{1}, \Delta_{2} \in\{<1 \leqslant 3$

$$
\begin{aligned}
& \left(\Delta_{1}, c\right)+(<, \infty)=(<, \infty) \\
& \left(\Delta_{1}, c_{1}\right)+\left(\Delta_{2}, c_{2}\right)=\left\{\begin{array}{cc}
\left(<, c_{1}+c_{2}\right) & \text { if either } \Delta_{1} \text { or } \\
\left(\leqslant, c_{1}+c_{2}\right) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

We also need a way to compare constraint.
For example: - $x-y \leqslant 2$ implies $x-y \leqslant 4$

- $x-y \leqslant 2$ implies $x-y<3$
- $x-y<2$ implies $x-y \leqslant 2$

We will define an order among weight that reflects this implication.

Let $c_{1} c_{1}, c_{2} \in \mathbb{Z}, \quad \mathbb{4}, \triangleleft_{1}, \mathbb{ष}_{2} \in\{<, \leqslant\}$

$$
\begin{aligned}
& \left(\Delta_{1}, c\right)<(<, \infty) \\
& \left(\Delta_{1}, c_{1}\right)<\left(\Delta_{2}, c_{2}\right) \quad \text { if } c_{1}<c_{2} \text { or } \\
& c_{1}=c_{2} \text { and } \Delta_{1}=< \\
& \Delta_{2}=\leqslant
\end{aligned}
$$

The total order on weights looks like this.

$$
\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\cdots & (\leq,-2) & (s,-1) & (\leq,-1) & (<, 0) & (\leq, 0) & (<, 1) & (\leq, 1) & (<, 2) \\
\cdots & \cdots & (<, \infty)
\end{array}
$$

Negative cycle:

- A path in a distance graph is a sequence of edge.
- Weight of a path is the sum of weight of its edges. For eg: $\quad \underset{x}{02}{ }_{y}^{<2} \xrightarrow{\leqslant-1}{ }_{w}$ has weight $(<, 1)$
- A cycle is a path that stark and ends with the same vertex.

A cycle in a distance graph is said to negative if its weight is less than or equal to $(<, 0)$

is NOT negative
is negative

- Negative cycles denote contradictions in the system of constraints. For example:

has a negative cycle $x^{0} \stackrel{s 1}{<-1}_{\sum_{<-1}}^{y}$

No valuation can satisfy

$$
y-x \leq 1
$$

$$
\text { and } \quad x-y<-1
$$

Similarly:
 is a negative cycle
representing:

$$
\begin{aligned}
x & \leq 1 \\
-x & \leq-3 \quad(x \geqslant 3)
\end{aligned}
$$

1.

a contradiction.

Here is a theorem that formalizes this observation.

Theorem: Let G be a distance graph.
【G卫 is non-empty of all cycles in G are non-negative.

Intersection of distance graphs:
Let $G_{11} G_{2}$ be distance graphs. Define
$\min \left(G_{1}, G_{2}\right)$ to be the graph where weight of each edge is given by the minimum of the corresponding weights in G_{1}, G_{2}.

Eg:
$G_{1} \quad G_{2}$

Note:

- When we do not draw an edge, the weight is assumed to be $(<, \infty)$. For eg. in the above graphs. weight of $0 \longrightarrow y$ is $(<, \infty)$

Min graph represent i the intersection of the two sets.

Lemma: $\llbracket \min \left(G_{1}, G_{2}\right) \rrbracket=\llbracket G_{1} \rrbracket \cap \llbracket G_{2} \rrbracket$

Canonical distance graphs:
A distance graph with no negative cycles is said to be in canonical form if for every pair $x, y \in X \cup\{0\}$, the shortest path from x to y is given by the edge: $x \longrightarrow y$.

Examples:

is not canonical due to the highlighted weight.

Canonical form of above graph is:

- Given a distance graph, its canonical form can be computed in $O\left(|x|^{3}\right)$ using floyd-Warshall's all-pairs shortest path algo. This algorithm can also detect the presence of negative cycles.

Canonical distance graph of a zone:
For a zone Z, we denote by G_{z} its canonical distance graph.
We write $Z_{x y}$ for the weight of the $x \rightarrow y$ edge in G_{z}

For example: let \mathbf{z} be the zone given below:

$$
\begin{array}{ll}
z_{0 x}=(\leqslant, 5), & z_{x_{0}}=(\leqslant-1) \\
z_{x y}=(\leqslant, 1), & z_{y x}=(\leqslant, 2) \\
z_{0 y}=(\leqslant, 4), & z_{y 0}=(\leqslant 1-1)
\end{array}
$$

Region-closure inclusion: Given zones Z, Z^{\prime}, define:

$$
Z \sqsubseteq_{M} Z^{\prime} \quad \text { if } \quad \forall v \in Z \quad \exists v^{\prime} \in Z^{\prime} \quad \text { st. } \quad v \simeq_{M} v^{\prime}
$$

From the definition, it is direct to see that $Z ᄃ_{M} Z^{\prime}$ iff for all M-regions R :

$$
R \cap z \neq \phi \quad \Rightarrow \cap z^{\prime} \neq \phi
$$

This give e the following lemma:
Lemma: Let z, z^{\prime} be non-empty zones.
$Z \not \ddagger_{M} z^{\prime} \quad$ iff $\quad \exists$ an M-region $R \quad$ st.

$$
R \cap z \neq \phi \quad \text { and } \quad R \cap z^{\prime}=\phi
$$

We will now state the main theorem:

Theorem: Let z, z^{\prime} be non-empty zones.

$$
\begin{aligned}
& z \not_{m} z^{\prime} \text { iff } \exists x, y \in \times \cup\{0\} \\
& Z_{x 0}+\left(\leqslant, M_{x}\right) \geqslant(\leqslant, 0) \text { and } \\
& Z_{x y}^{\prime}<z_{x y} \text { and } \\
& Z_{x y}^{\prime}+\left(<,-M_{y}\right)<(\leqslant, 0)
\end{aligned}
$$

Part 2: Illustrating the test on some examples.

Example 1:

$$
M_{x}=2, \quad M_{y}=3
$$

Blue zone: \mathbf{Z}
Red zone: z^{\prime}
$Z \ddagger_{M} Z^{\prime}$ due to the following witnesses:

$$
\begin{aligned}
& Z_{\downarrow 0}+\left(\leq, M_{\downarrow}\right) \geqslant(\leqslant, 0) \quad \wedge \quad Z_{x 0}^{\prime}<Z_{\downarrow 0} \\
& (\leqslant,-1) \quad(\leqslant, 2) \quad(\leqslant,-2) \quad(\leqslant,-1)
\end{aligned}
$$

Exercise: Are there other (2-variable) witnesses?

Example 2:

$$
M x=4, \quad M y=3
$$

$$
\begin{aligned}
& \text { Blue: } z \\
& \text { Red : } z^{\prime}
\end{aligned}
$$

$z \not \ddagger_{\mu} Z^{\prime}$ became:

Exercise: Are there any other (2-vaicble) witnesses?

