GOALS:

- Event-Clock Automata -> Timed Automata
- Expressiveness of various models

ERN TO TA:

Given ERN
$$A = (Q, Z, B_0, \Delta, F)$$

TA equivalent to ord in given by:

State: (q, ψ) where $q \in Q$

$$\psi \subseteq \{x_0 = 1 \mid a \in E\}$$

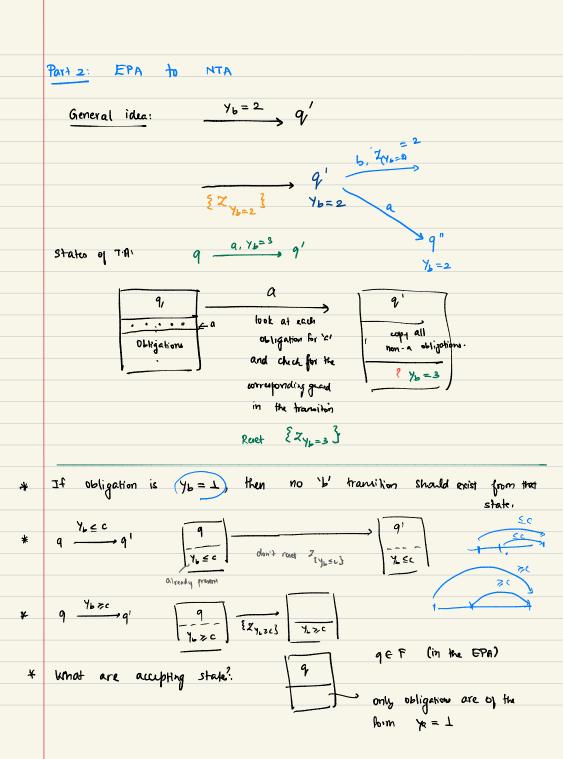
Initial state: (q, ψ) st. $q \in Q_0$

$$\psi \subseteq \{x_0 = 1 \mid a \in E\}$$

Accepting: (q, ψ) st. $q \in F$

Transitions: (q, ψ) st. $q \in F$

Transitions: (q, ψ) $\frac{a \cdot q}{R}$ (q', ψ') if


$$= (q, a, \varphi, q') \in \Delta$$

$$= ii \varphi$$
 contains q_{b-1} for some be S , then $(q_{b-1}) \in Y$

$$= g$$
 is conjunction of all constrains $q_{a} \sim C$ in Q

$$= Y' = Y \setminus \{x_0 = 1\}$$

$$= R$$
 is $\{x_0 \in Y_0\}$

EPA to NTA:

Given EPA
$$A = (Q, \Xi, Qo, \Delta, F)$$
.

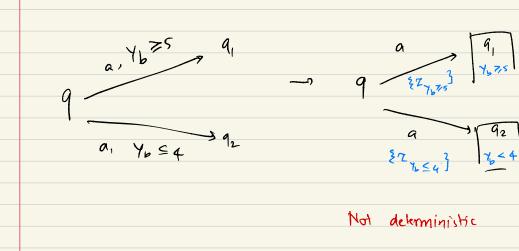
The equivalent NTA is given as follows:

Let Φ be the Set of all atomic clock constraints appearing in edge of A.

Atomic clock constraints: $y_a = 1$ or $y_a \sim C$

Thinkial state: (q, y_a) $q \in Q$
 Q

- Accepting state: (9,4) $9 \in F$ $4 \subseteq 2 \quad 4 = 11 \quad a \in 2$


- clocks: For every 4:= (ya~c) & \$\overline{\Phi}_A, keep a clock \$\infty_n\$

- Transitions: $(q, y) \xrightarrow{a, g} (q', wi)$ if $(q, a, \varphi, q') \in \Delta$ $q \xrightarrow{e, \varphi} q'$ inem Constraint ya=1 does not appear in U g: Conjunction of Lyans of for every yarc & 41 For all 6 \pm a, If a constraint involving y appears in the it appears in 41 then it -v) Each atomic constraint of 4 appears in 41. - vi) For each 'b', and for ~ equal to > or >, xy appears in reset condition Rift constraint you is present in 9. - vii) For each 'b', and for ~ equal to < or <, Zy appears in rest condition R ist corretraint your is prount in 4 and either b=a on the constraint your is not present

Part 3. ECA to NTA: Combination of both method Question: -1. Does that to the preserve determinism? Yes. -2. Dou EPA to T.A. priverve deforminism? ERA to TA. 9 21 25 391

- quands are maintained as they are in the EXA.

This will ensure that lif we start with a DERA, we will get a D. T.A.

Expressive Power of different classes O) ERA & DTA: conversion preserve determinism. 2) ERA 👤 EPA

3) 5PA & ERA a a b -> EPA but not ERA a b b - ERA, but not EPA

4) DTA \$\frac{1}{4} \text{EPA} \big(3 \cdot \in \text{DTA which } \\ is not \text{EPA r(cy.)} \) 5) \text{EPA \$\frac{1}{4}\$ DTA abb

FT m JE AT & ECA (3L in DTA which is not ECA TELOS $\frac{1}{a} \frac{a}{a} \frac{a}{a}$

{ a b | k=1, 3 some a which is at (see next page) 6) ECA & DID 3 L in ECA which is not

7) ECA & EPA VERA, { QQ b] U { Qb L 3

DTA YELD,

8) ECA S NTA: conversion algorithms as seen before

EPA & DTA

{ akb | k=1, there exists an 'a' which is at distance

$$\xrightarrow{A} \xrightarrow{a} \xrightarrow{A} \xrightarrow{b} \bigcirc$$

There is no DTA for this language. Intuitively, we cannot guess the 'a' deterministically for which the b is at distance 1.

Exercise. Prove this formally.

Summary:

- Event - clock automata.
- Xe: records time sinu last revent
- Ya: predicts time to next 'a' event
Id. The second
- Dekrminized
- Der (million)
- flored under boolean presention.
- Closed under boolean operations:
Inclusion: L(B) \(\mathcal{L}(A)
1
7. A 6.C.A
, ·
V
Let A^c be the EUA for $Z(A)$
\downarrow
ab be the NTB equivalent to A
w se jul 10 its equivalent 10 of
L(B) = L(A) (=> L(B) \(\) L(A') = \(\)
(=) (lb) n x(D) = \$
Lo N.TM.
- Decidable if A is an ECA.
wayoner 1) or 13 or coff
- Extration bonus at the model.
- Expressive power of the model.