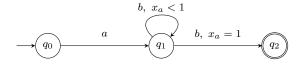
1. Complement the following event-clock automaton:



2. Let Σ and Γ be two finite alphabets. A homomorphism is a function $h: \Sigma \mapsto \Gamma$. This can be extended to timed words as follows:

 $h((a_1a_2...a_k, t_1t_2...t_k)) = (h(a_1)h(a_2)...h(a_k), t_1t_2...t_k)$

Similarly, for a timed language L, we define $h(L) := \{ h((w, t)) \mid (w, t) \in L \}.$

Call a timed language L to be an *event-clock language* if there is an ECA accepting L.

Given timed language L over Σ , and homomorphism $h: \Sigma \mapsto \Gamma$.

- (a) Are event-clock languages closed under homomorphisms? That is, if L is an event-clock language, is h(L) also an event-clock language?
- (b) If h(L) is an event-clock language, is L an event-clock language?
- 3. Let $w = (a_1 a_2 \dots a_n, t_1 t_2 \dots t_n)$ and $w' = (a_1 a_2 \dots a_n, t'_1 t'_2 \dots t'_n)$ be two timed words such that $t_i t_j =$ $t'_{i} - t'_{i}$ for all $i, j \in \{1, \dots, n\}$. Show that for every ECA A, the word w is accepted by A iff w' is accepted by A.

- 4. Consider a reverse operation for an ECA A:
 - replace every transition (q, a, g, q') by (q', a, g', q) where g' is obtained by replacing every x_a by y_a , and every y_a by x_a (essentially, we reverse the transition and interchange recording and predicting clocks).
 - the final states of A are the initial states of A',
 - the initial states of A are the final states of A'.

What is the language of A', in terms of the language of A?