1. Group the following valuations over five clocks $\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$ into regions. Assume that $M_{x_{1}}=$ $8, M_{x_{2}}=3, M_{x_{3}}=5, M_{x_{4}}=2, M_{x_{5}}=7$.

$$
\begin{aligned}
v_{1} & :=(7.4,2.1,8.7,5.4,7.0) \\
v_{2} & :=(3.4,2.0,8.5,10.0,7.1) \\
v_{3} & :=(7.3,2.2,8.8,5.2,7.0) \\
v_{4} & :=(7.5,2.1,8.9,5.5,7.0) \\
v_{5} & :=(3.2,2.0,8.8,10.0,7.5) \\
v_{6} & :=(3.3,2.0,8.4,10.0,7.2)
\end{aligned}
$$

2. Consider an automaton with 2 clocks $\{x, y\}$. Let the maximum bounds function M for the automaton be given by: $M(x)=3, M(y)=4$. Draw the division of the $x y$-plane into regions.
3. Given 3 clocks $\{x, y, z\}$ and $M(x)=2, M(y)=1, M(z)=2$, enumerate the set of regions.
4. Let R be a region over clock set X and bound function M. Give an algorithm to compute the timesuccessors of a region R.
5. Draw the region automaton for the following automata:

6. Suppose R is a region over clock set X and bound function M. Let x, y be two arbitrary clocks in X. Is the projection of R on to the $x y$-plane a region over $\{x, y\}$ with the bounds function M restricted to x and y ?
