TIMED AUTOMATA

LECTURE 6

Given T.A. A and B, checking if

$$S_{1}^{\text{second}} \sim \mathcal{L}(B) \subseteq \mathcal{L}(A) \leftarrow Property$$

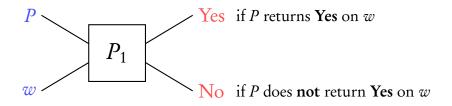
is undecidable

B and I were NFA, how would we check: IA $\mathcal{L}(B) \subseteq \mathcal{R}(A)$? - untimed words over 5. (a) (a) (a) (a)く(A7) ~(B) n ~(A5 + カ 2167 21B) S XIAD iff XIBD 1 XIAD = \$ For NFA's we can effectively construct automation of too RIA). $L(A') = L(A)^{c}$ - We have seen earlier that there are fined automata for which the complement is not timed regular. - so we cannot employ this technique for timed automata inclusion

Language inclusion is undecidable

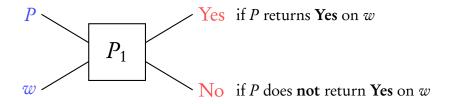
Coming Next: Short recap of undecidability

- *P*: an arbitrary **boolean program** (string)
- w: an arbitrary string

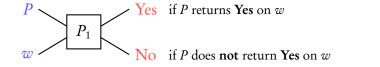


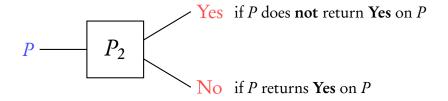
P : an arbitrary **boolean program** (string)

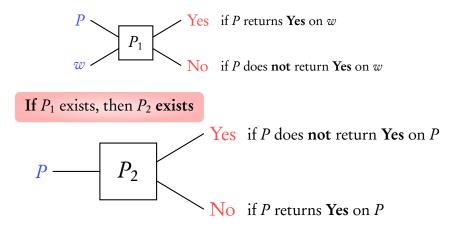
w: an arbitrary string

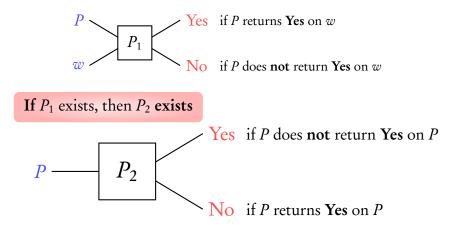


Can program P_1 exist?

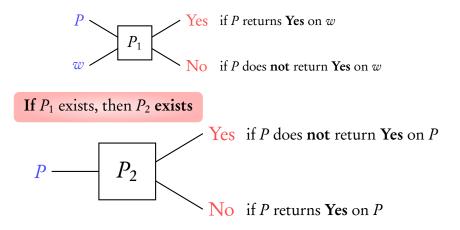


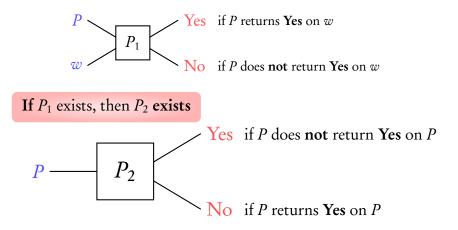




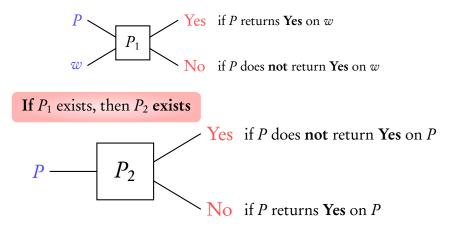


 P_2 returns Yes on P_2

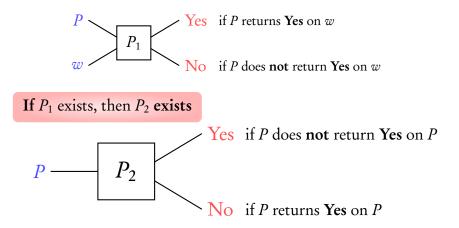




 P_2 returns **No** on P_2

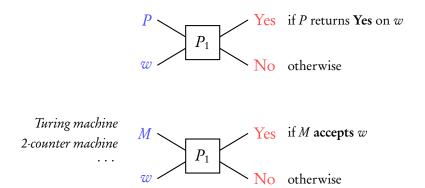


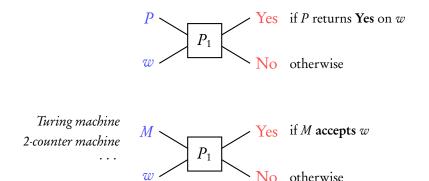
 P_2 returns **No** on P_2 if P_2 returns **Yes** on P_2

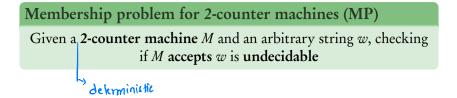


 P_2 returns **No** on P_2 if P_2 returns **Yes** on P_2

 P_2 cannot exist \Rightarrow P_1 cannot exist







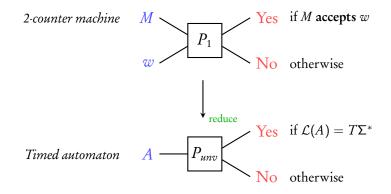
Goal of this lecture

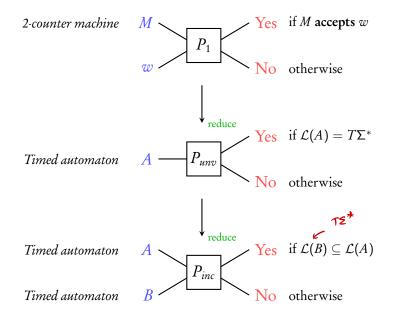
Timed regular languages are **powerful** enough to **encode** computations of **2-counter machine**

We will see:

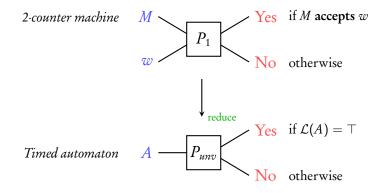
If there is an algorithm for TA language inclusion, then there is an algorithm for MP 2-counter machine

Yes if M accepts wМ . P_1 No otherwise w.

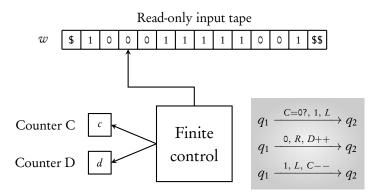




Coming next...



2-counter machines



Computation: $\langle q_0, w_0, 0, 0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_i, w_i, c_i, d_i \rangle \cdots$ Accept: if some computation ends in $\langle q_F, \star, \star, \star \rangle$

Given M and w

define timed language Lundec s.t

M accepts *w* iff $L_{undec} \neq \emptyset$

Words in L_{undec} encode accepting computations of M on w

Configuration of a 2-counter machine:

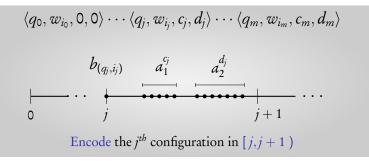
 $\langle q, w_k, c, d \rangle$

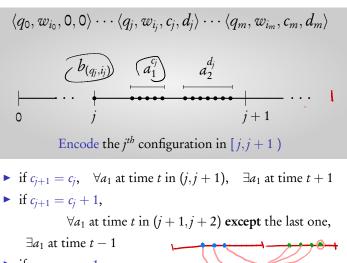
Encoding as a word over alphabet: $\{a_1, a_2, b_i\}$ where $i \in Q \times \{0, \dots, |w| + 1\}$

 $b_{(q,k)} a_1^c a_2^d$

 $\begin{array}{c} b & a_1 a_1 a_1 a_2 a_2 a_4 a_4 a_4 \\ (q_{1}, v_{\tau}) \end{array}$

<q₁, w₅, 3, 5>





• if
$$c_{j+1} = c_j - 1$$
,

 $\forall a_1 \text{ at time } t \text{ in } (j, j+1) \text{ except the last one,}$

 $\exists a_1 \text{ at time } t+1$

(same for counter d)

 $\begin{bmatrix} b_{(q_0, v)} \\ 0 \end{bmatrix} \begin{bmatrix} b_{(q_{1,1})} & a_1 & a_2 \\ 1 & 1.5 & 1.7 \end{bmatrix} \begin{bmatrix} b_{(q_{2,2})} & a_1 & a_1 & a_2 \\ 2 & 2.5 & 2.5 & 2.7 \end{bmatrix}$ $\langle q_{0}, w_{1}, 0, 0 \rangle = \langle q_{1}, w_{1}, 1, 1 \rangle = \langle q_{2}, w_{2}, 2, 1 \rangle$ - Notice that there are infinitely many timed words that encode one computation. This is due to the choice of time stamps.

L_{undec} : encodes the accepting computations

Timed word $(\sigma, \tau) \in L_{undec}$ iff

L_{undec} : encodes the accepting computations

Timed word $(\sigma, \tau) \in L_{undec}$ iff

 $\bullet \quad \sigma = b_{i_0} a_1^{c_0} a_2^{d_0} \quad b_{i_1} a_1^{c_1} a_2^{c_2} \cdots \quad b_{i_m} a_1^{c_m} a_2^{c_m} \text{ s.t.}$ $\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting}$

L_{undec} : encodes the accepting computations

Timed word $(\sigma, \tau) \in L_{undec}$ iff

- $\bullet \quad \sigma = b_{i_0}a_1^{c_0}a_2^{d_0} \quad b_{i_1}a_1^{c_1}a_2^{c_2} \quad \cdots \quad b_{i_m}a_1^{c_m}a_2^{c_m} \text{ s.t.}$ $\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting}$
- ► each b_{i_j} occurs at time j . Q,'s and a's occur at different time stamps.

L_{undec} : encodes the accepting computations

Timed word $(\sigma, \tau) \in L_{undec}$ iff

- $\sigma = b_{i_0}a_1^{c_0}a_2^{d_0} \ b_{i_1}a_1^{c_1}a_2^{c_2} \ \cdots \ b_{i_m}a_1^{c_m}a_2^{c_m} \text{ s.t.}$ $\langle q_0, w_{i_0}, c_0, d_0 \rangle \langle q_1, w_{i_1}, c_1, d_1 \rangle \cdots \langle q_m, w_{i_m}, c_m, d_m \rangle \text{ is accepting}$
- ► each b_{i_j} occurs at time j ► Q_i 's and a_2 's occurs at different time stamps.
- if $c_{j+1} = c_j$, $\forall a_1$ at time t in (j, j+1), $\exists a_1$ at time t+1
- if $c_{j+1} = c_j + 1$,
 - $\forall a_1 \text{ at time } t \text{ in } (j+1, j+2) \text{ except the last one,}$

 $\exists a_1 \text{ at time } t-1$

• if $c_{j+1} = c_j - 1$,

 $\forall a_1 \text{ at time } t \text{ in } (j, j+1) \text{ except the last one,}$

 $\exists a_1 \text{ at time } t+1$

(same for counter d)

Given M and w

define timed language Lundec s.t

M accepts *w* iff $L_{undec} \neq \emptyset$

Words in L_{undec} encode accepting computations of M on w

Done!

Given M and w

construct a timed automaton A_{undec}

for the **complement** language $\overline{L_{undec}}$

Given M and w

construct a timed automaton A_{undec}

for the **complement** language $\overline{L_{undec}}$

M accepts w iff $\mathcal{L}(\mathcal{A}_{undec}) \neq T\Sigma^*$

M Alleph W (=> Lunsec
$$\neq \phi$$

(=> $L_{unsec} \neq T \leq^{2}$ (universal)

Given M and w

construct a timed automaton A_{undec}

for the **complement** language $\overline{L_{undec}}$

M accepts w iff $\mathcal{L}(\mathcal{A}_{undec}) \neq T\Sigma^*$

 \rightarrow reduction to universality of TA

 $\overline{L_{undec}}$: words that **do not** encode accepting computations

Timed word $(\sigma, \tau) \in \overline{L_{undec}}$ iff

 $\overline{L_{undec}}$: words that **do not** encode accepting computations Timed word $(\sigma, \tau) \in \overline{L_{undec}}$ iff

• either, there is **no** *b*-symbol at some integer point *j*

or, two ai's occur at the same time stamp.

Timed word $(\sigma, \tau) \in \overline{L_{undec}}$ iff

either, there is no b-symbol at some integer point j or, two ai's occur at the same time stamp.

• or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^*$

batat batat batat b

- either, there is no b-symbol at some integer point jor, $t_{1/0}$ a'_{k} ocan at the same time stamp
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^*$
- or, initial subsequence in [0, 1) is wrong

- either, there is no b-symbol at some integer point j
 or, type a's occur at the same time stamp
 or, there is a (j, j + 1) with a subsequence not of the form a₁^{*}a₂^{*}
- or, initial subsequence in [0, 1) is wrong
- or, some transition of *M* has been violated in the word

- either, there is no b-symbol at some integer point j or, typo a' & occur at the same time stamp
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^*$
- or, initial subsequence in [0, 1) is wrong
- or, some transition of *M* has been violated in the word
- or, final *b*-symbol denotes non-accepting state

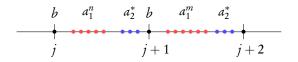
- either, there is no b-symbol at some integer point j A₀ or, ty₁₀ a'_k occur at the same type stamp A'_k
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^* A_1$
- or, initial subsequence in [0, 1) is wrong A_{init}
- or, some transition of *M* has been violated in the word A_t for each transition *t* of *M*
- ▶ or, final *b*-symbol denotes **non-accepting** state *A_{acc}*

- either, there is no b-symbol at some integer point $j A_0$, $t_{V_10} a'_A v_{curr} at the same time stamp A'$
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^* A_1$
- or, initial subsequence in [0, 1) is wrong A_{init}
- or, some transition of *M* has been violated in the word A_t for each transition *t* of *M*
- ▶ or, final *b*-symbol denotes **non-accepting** state *A_{acc}*

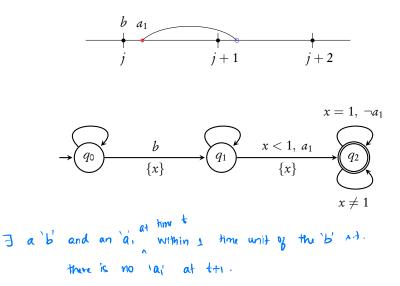
Required
$$\mathcal{A}_{undec}$$
: union of $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{init}, \mathcal{A}_{t_{1}}, \ldots, \mathcal{A}_{t_{p}}, \mathcal{A}_{acc}$

Main challenge: - Coming up with an automaton At b(q,wi) b' Assume t: (q, 0, c++, 1, q') There is a vio lation of t iff there exist a b (q, w) sit. Wi =0 and one of the following occurs: - the letter at j+1 is not b (q', with) - there exists an a1 in te (j+1, j+27, which is not the last for which there is no predecessor at t-1.

Crux

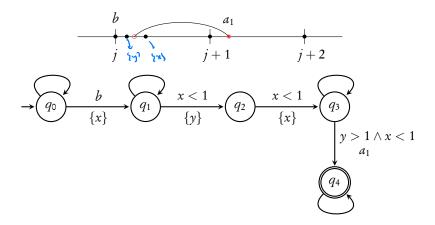


With our encoding, can timed automata express that $n \neq m$? 1. $\exists a_1$ at time $t \in (j, j + 1)$ s.t there is no a_1 at t + 1, or 2. $\exists a_1$ at time $t \in (j + 1, j + 2)$ s.t. there is no a_1 at t - 1If we give automata for these two languages, then we can find automate for the transition violations (Ar). $\exists a_1 \text{ at time } t \in (j, j+1) \text{ s.t there is no } a_1 \text{ at } t+1$

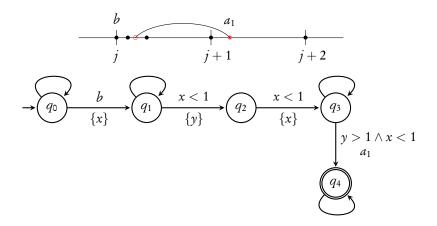


 $\exists a_1 \text{ at time } t \in (j+1, j+2) \text{ s.t. there is no } a_1 \text{ at } t-1$

- C



 $\exists a_1 \text{ at time } t \in (j+1, j+2) \text{ s.t. there is no } a_1 \text{ at } t-1$



Need only two clocks!

- either, there is no b-symbol at some integer point $j A_0$, $t_{y_10} a'_A a_a$ the same time stamp A'
- or, there is a (j, j + 1) with a subsequence **not** of the form $a_1^* a_2^* A_1$
- or, initial subsequence in [0, 1) is wrong A_{init}
- or, some transition of *M* has been violated in the word A_t for each transition *t* of *M*
- ▶ or, final *b*-symbol denotes **non-accepting** state *A_{acc}*

Required
$$\mathcal{A}_{undec}$$
 can be constructed using two clocks
 \mathcal{D}
 \mathcal{A}_{0} \mathcal{A}_{1} \mathcal{A}_{1} $\mathcal{A}_{1_{0}1_{1}}$ $\mathcal{A}_{1_{1}}$ $\mathcal{A}_{1_{1}}$ $\mathcal{A}_{1_{1}}$ $\mathcal{A}_{1_{1}}$ $\mathcal{A}_{1_{1}}$ $\mathcal{A}_{1_{1}}$ $\mathcal{A}_{1_{1}}$ $\mathcal{A}_{1_{1}}$

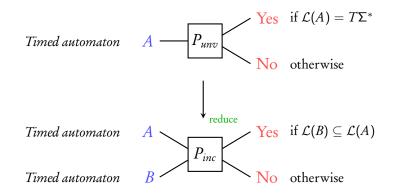
M accepts w iff $\mathcal{L}(A_{undec}) \neq T\Sigma^*$

Universality for TA

The universality problem is **undecidable** for TA with **two clocks or more**

A theory of timed automata

Alur and Dill. TCS'94



Put *B* as the **trivial** single state automaton **accepting** $T\Sigma *$

$$\mathcal{L}(A) = T\Sigma^* \quad \text{iff} \quad \mathcal{L}(B) \subseteq \mathcal{L}(A)$$

Language inclusion

The problem $\mathcal{L}(B) \subseteq \mathcal{L}(A)$ is undecidable when A has two clocks or more

A theory of timed automata

Alur and Dill. TCS'94