TIMED AUTOMATA

LECTURE 18

Timed automate with diagonal constraints:
From pro-

$$q_1$$
 b, q_2 be C d
 $Cither (a,br) \leq \epsilon$ and then $(a,be) \geq 10$ and then $(c,b) = 2$
 $Si \quad time (a,br) \geq 10$ and then $(a,be) \geq 10$ and then $(c,d) = 45$
 $b^{+} \leq c = 0$
 $b^{+} = b^{+} = b^{+} = b^{+} = 0$
 $b^{+} = b^{+} = b^$

Questions: -1) allo diagonal constraints add expressive power? No -2) 200 diagonal constraints give succinements? Yes Motivation. Even though diagonal constraints do not add expressive power, they ofter modeling zonvenience & at times they can produce exponentially succinct models. Diagonal constraints: X: set of clock x-y~c ceiN~e \$<, <, =, >,>3 Guardi p = x ~ c | x - y ~ c | P N P **n**, y E X Eq. y-x <2 N Z=5 d-Timed automata: Timed automata where guarde can contain diagonal constraints.

Theorem: For every d-timed automaton A, there exists a timed automaton B s_{1} $\chi(x) = \chi(B)$ Eliminating diagonal constraints: Assume that of has a single diagonal constraint: $x - y \leq c$ 90<u>x-ys</u> Ą I dea. At state of the automaton needs to know whether x-y < 5 or not. Split every state p into two copies (p, 1) (þ, 0) When this copy is reached, reached, we should have n-y > 5 X~Y 55 - Suppose go is the initial state. - Initially X-Y=0, $\therefore X-Y \leq s$ is true Henu start with (90, 1) 0 (p', 0) $(q_{0+1}) \longrightarrow (q_{1+1}) \longrightarrow (q_{2+1})$ - When do we jump from o-copy to 1-copy? I for m. p. 1 $(p, 1) \longrightarrow (p', 0)$

 $0 \left(p', o \right) \right)$ - When do we jump from 0-copy to 1-copy? I form pi (p, 1) (p', 0) i) Suppose n is reset. Value of x-y becomes o-y which is still ≤ 5 - So automation does not go to the On copy. ii) Suppose y is real. Value of X-y becomes x-0 → if x ≤ 5, then stay in 1- copy - dre 275, so go to 0-copy, $\begin{array}{c} \chi \leq 5 \\ (p, 1) & \qquad & \\ 2y3 \\ \hline \chi 75 \\ \hline \chi$ $\mathbb{P} \xrightarrow{\{\gamma\}} \mathbb{P}'$

When do we jump from 0 copy to 1-cop?
Suppore
$$P \xrightarrow{222} P'$$
 or $P \xrightarrow{1}_{1/35} P'$ or

Given A: defined automation:
$$A = (Q_{1}, Q_{1}, X, Z, A, F)$$

- Atome that A has a single diagonal constraint $X - Y \leq C$
Equivalent timed automation B:
 $Q^{A} = Q^{A} \times \{0,1\}^{3}$
 $Q^{B} = (Q^{A}, 1)$ since $0 \leq C$ CER
 Δ^{A} : For avery $P \xrightarrow{A_{1}, 3}_{R} \to P'$,
- Suppose g containe $X, Y \leq C$.
 $(P, 1) \xrightarrow{A, S}_{R} (P', 1)$ if R containe X
 $(P_{1}, 1) \xrightarrow{A, S'}_{R} (P', 1)$ if R containe X
 $(P_{1}, 1) \xrightarrow{A, S'}_{R} (P', 1)$ clue, if R containe X
 $(P_{1}, 1) \xrightarrow{A, S'}_{R} (P', 1)$ alse (when E containe Y
 $(P_{1}, 1) \xrightarrow{A, S'}_{R} (P', 1)$ alse $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$
 $= Suppose g down or contain $Y - Y \leq C$.
In addition to above, we have:
 $(P_{1}, 0) \xrightarrow{A, S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .
 $(P_{1}, 0) \xrightarrow{A \cap S}_{R} (P', 0)$ alse .$

Exercises when the diagonal constraint is
$$n-y \ge c$$
, $c \ge 0$
For way $p \xrightarrow{a.3} p'$
Suppose g containe $n-y \ge c$
 $(p, 1) \xrightarrow{a. g' \times 2 \leftarrow} (p', 0)$ if R contains z
 $(p, 1) \xrightarrow{a. g' \times 2 \leftarrow} (p', 0)$ else $(e \text{ contains } y)$
 $(p, 1) \xrightarrow{a. g' \times 2 \leftarrow} (p', 0)$
 R
 $(p, 1) \xrightarrow{a. g' \times 2 \leftarrow} (p', 0)$
 R
 $(p, 1) \xrightarrow{a. g'} (p', 1)$ else $(e \text{ contains nertical})$
Suppose g dow not contain $n-y \ge c$, there are additional
transitions.
Exercise 1

When A contains more than one diagonal constraint? w-u≥7 Eliminate one diagonal constraint at a time. In the end, there is a diagonal free automation whore states are of the form. <9,01100> a bit vector with length equal to no. of diagonals in A. -> The transitions update the truth of the diagonal. Complexity. The resulting timed automaton B is exponentially bigger. SUmmary: - Timed automata with diagonaly are as exprensive as diagonal-free timed automata. - construction of eliminating diagonals is in this paper. Bérard, Gastin, Dieckert, Petit' 98