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Universality / Inclusion
-

DTA : use the complement

- NITA : Undecidable with 32 docks



Let T⌃⇤ denote the set of all timed words

Universality: Given A, is L(A) = T⌃⇤ ?

Inclusion: Given A, B, is L(B) ✓ L(A) ?

Universality and inclusion are undecidable when A has two
clocks or more

A theory of timed automata

Alur and Dill. TCS’94
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A decidable case of the inclusion
problem
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Universality: Given A, is L(A) = T⌃⇤ ?

Inclusion: Given A, B, is L(B) ✓ L(A) ?

One-clock restriction
Universality and inclusion are decidable when A has at most

one clock

On the language inclusion problem for timed automata: Closing a decidability gap

Ouaknine and Worrell. LICS’05

In this lecture: universality for one clock TA
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We still cannot hope to solve these problems by taking
the complement of it , because there are 1- clock 7A>

that cannot be
complemented

.
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Step 0:

Well-quasi orders and Higman’s Lemma
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Quasi-order

Given a set Q, a quasi-order is a reflexive and transitive relation:
v ✓ Q⇥Q

I (N,)

I (Z,)

Let ⇤ = {A,B, . . . ,Z}, ⇤⇤ = {set of words}

I (⇤⇤, lexicographic order vL): AAAB vL AAB vL AB

I (⇤⇤, prefix order ✓P): AB ✓P ABA ✓P ABAA

I (⇤⇤, subword order 4) HIGMAN 4 HIGHMOUNT AIN [OW’05]
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Well-quasi-order

An infinite sequence hq1, q2, . . . i in (Q,v) is saturating if 9 i < j : qi v qj

A quasi-order v is a well-quasi-order (wqo) if every infinite sequence is
saturating

I (N,)

p

I (Z,)

⇥�1 � �2 � �3, . . .

I (⇤⇤, lexicographic order vL):

⇥ B wL AB wL AAB . . .

I (⇤⇤, prefix order ✓P):

⇥ B, AB, AAB, . . .

I (⇤⇤, subword order 4)

?
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Higman’s lemma

Let v be a quasi-order on ⇤

Define the induced monotone domination order 4 on ⇤⇤ as follows:

a1 . . . am 4 b1 . . . bn if there exists a strictly increasing function
f : {1, . . . ,m} 7! {1, . . . , n} s.t
8 1  i  m : ai v bf (i)

Higman’52

If v is a wqo on ⇤, then the induced monotone domination order 4 is a
wqo on ⇤⇤
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Subword order

⇤ := {A,B, . . . ,Z}
v := x v y if x = y

v is a wqo as ⇤ is finite

Induced monotone domination order 4 is the subword order

HIGMAN 4 HIGHMOUNT AIN

By Higman’s lemma, 4 is a wqo too

If we start writing an infinite sequence of words, we will eventually
write down a superword of an earlier word in the sequence
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Step 1:

A naive procedure for universality of one-clock
TA

10/33



Terminology
Let A = (Q,⌃,Q0, {x},T , F) be a timed automaton with one clock

I Location: q0, q1, · · · 2 Q

I State: (q, u) where u 2 R�0 gives value of the clock

I Configuration: finite set of states

{(q1, 2.3), (q0, 0)}

q0 q1

x < 1, a

{x}

1  x  3, ⌃

x � 2, b
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Goal :
-

We want to check if LCA ) is universal .

-

suppose A was deterministic .

↳

Complement and check for emptiness .

- Else
,

at is non-deterministic :

(ai , ti ) Carita) - -
- lanitn)

{ (go , 07 }91
Ji = ti - ti -i

to -_ u
92

{n } { 19, , 817192,07 } \
,

Oz,"/ If neither 9 ,
nor

qz is
accepting ,{ ( 7 1) C) ( ) } then hie can be sure

that la , ,t , ) is

not accepted by A,
since we have accumulated

all the possible states

to which it goes on

reading la.it) .

- If we have such a graph , then checking whether 9

timed word is accepted boils down to moving down

to the unique node in this graph that represents
the timed word - that node contains all states reached

by A on the word .
If the node contains no accepting

location
, then the word is rejected . Else accepted -

- Does there exist a word which is rejected ?



Transition between configurations:

{(q0, 0)}
0.2, a���!

{(q1, 0.2)}
2.1, b���! {(q1, 2.3), (q0, 0)} . . .

q0 q1

x < 1, a

{x}

1  x  3, ⌃

x � 2, b

C1
�, a��! C2 if

C2 = { (q2, u2) | 9(q1, u1) 2 C1 s. t. (q1, u1)
�, a��! (q2, u2)}
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Labeled transition system of configurations

...

...

0.4, a 3.6, b . . .. . . . . . . . .

Bad: all locations non-accepting

Is a bad configuration reachable from some initial configuration?

13/33
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Not true !
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Labeled transition system of configurations
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0.4, a 3.6, b . . .. . . . . . . . .

Bad: all locations non-accepting

Is a bad configuration reachable from some initial configuration?
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...

...

. . .. . . . . . . . .

Need to handle two dimensions of infinity!
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...

...

. . .. . . . . . . . .
abstraction by equivalence ⇠C1 C2

C1 ⇠ C2 iff:

C1 goes to a bad config. , C2 goes to a bad config.
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...

...

. . .. . . . . . . . .

finite domination order 4

C1

C2

C1 4 C2 iff:

C2 goes to a bad config ) C1 goes to a bad config. too

No need to explore C2!

16/33
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A : one - dock :

I.
Infinite labeled transition system

of configurations.

\
.

Horizontal infinity Vertical infinity

~

equivalence £ finite domination÷ order
.

~
and & will result

in a finite graph .

~ : next class .


