

LECTURE 15

Determinism

- DTA C NTA
- Event-clock automata

Empliness

- Region automaton - Zone graph + simulations

TIMED AUTOMATA

- NTA: Undecidable with ≥2 docks

Advanced topics

Let $T\Sigma^*$ denote the set of all timed words

Universality: Given A, is $\mathcal{L}(A) = T\Sigma^*$? Inclusion: Given A, B, is $\mathcal{L}(B) \subseteq \mathcal{L}(A)$? (=) $\mathcal{L}(A)^c \neq \phi$

Universality and inclusion are **undecidable** when A has **two clocks** or more

A theory of timed automata

Alur and Dill. TCS'94

A decidable case of the inclusion problem

Universality: Given A, is $\mathcal{L}(A) = T\Sigma^*$? Inclusion: Given A, B, is $\mathcal{L}(B) \subseteq \mathcal{L}(A)$? (A) $\mathcal{L}(A) \stackrel{c}{\neq} \phi$

One-clock restriction

Universality and inclusion are decidable when A has at most one clock

On the language inclusion problem for timed automata: Closing a decidability gap Quaknine and Worrell, *LICS*⁽²⁾

We still cannot hope to solve these problems by taking the complement of A, because there are 1-clock T.A. that cannot be complemented. Universality: Given A, is $\mathcal{L}(A) = T\Sigma^*$? Inclusion: Given A, B, is $\mathcal{L}(B) \subseteq \mathcal{L}(A)$?

One-clock restriction

Universality and inclusion are decidable when A has at most one clock

On the language inclusion problem for timed automata: Closing a decidability gap

Ouaknine and Worrell. LICS'05

In this lecture: universality for one clock TA

Step 0: Well-quasi orders and Higman's Lemma

Quasi-order

Given a set Q, a quasi-order is a **reflexive** and **transitive** relation: $\Box \subseteq Q \times Q$

- ▶ (ℕ,≤)
- ▶ (ℤ,≤)
- Let $\Lambda = \{A, B, \dots, Z\}$, $\Lambda^* = \{\text{set of words}\}$
- (Λ^* , lexicographic order \sqsubseteq_L): AAAB $\sqsubseteq_L AAB \sqsubseteq_L AB$
- (Λ^* , prefix order \subseteq_P): $AB \subseteq_P ABA \subseteq_P ABAA$
- ► (Λ^* , subword order \preccurlyeq) *HIGMAN* \preccurlyeq *HIGHMOUNTAIN* [OW'05]

Well-quasi-order

An infinite sequence $\langle q_1, q_2, \dots \rangle$ in $(\mathcal{Q}, \sqsubseteq)$ is saturating if $\exists i < j : q_i \sqsubseteq q_j$

A quasi-order \sqsubseteq is a well-quasi-order (wqo) if every infinite sequence is saturating

- ► (N, ≤) Wqo. No infinite decreasing seq.
- ► (Z,≤) X 0 -1 -2 -2 -----
- (Λ^* , lexicographic order \sqsubseteq_L):
- (Λ^* , prefix order \subseteq_P):

9, 92 91 --- 9;

• (Λ^* , subword order \preccurlyeq)

Well-quasi-order

An infinite sequence $\langle q_1, q_2, \dots \rangle$ in $(\mathcal{Q}, \sqsubseteq)$ is saturating if $\exists i < j : q_i \sqsubseteq q_j$

A quasi-order \sqsubseteq is a well-quasi-order (wqo) if every infinite sequence is saturating

- ▶ (ℕ,≤) √
- $(\mathbb{Z}, \leq) \times -1 \geq -2 \geq -3, \ldots$
- (Λ^* , lexicographic order \sqsubseteq_L): $\times B \sqsupseteq_L AB \sqsupseteq_L AAB \dots$
- (Λ^* , prefix order \subseteq_P): \times *B*, *AB*, *AAB*, ...
- (Λ^* , subword order \preccurlyeq)

B \$ AB

AB \$PB

N'B \$ A'B

Well-quasi-order

An infinite sequence $\langle q_1, q_2, \dots \rangle$ in $(\mathcal{Q}, \sqsubseteq)$ is saturating if $\exists i < j : q_i \sqsubseteq q_j$

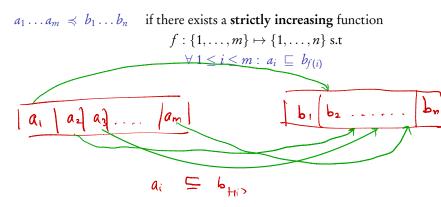
A quasi-order \sqsubseteq is a well-quasi-order (wqo) if every infinite sequence is saturating

- ▶ (ℕ,≤) √
- $(\mathbb{Z}, \leq) \times -1 \geq -2 \geq -3, \ldots$
- (Λ^* , lexicographic order \sqsubseteq_L): $\times B \sqsupseteq_L AB \sqsupseteq_L AAB \dots$
- (Λ^* , prefix order \subseteq_P): \times *B*, *AB*, *AAB*, ...
- (Λ^* , subword order \preccurlyeq)?

Higman's lemma

Let \sqsubseteq be a quasi-order on Λ

Define the induced monotone domination order \preccurlyeq on Λ^* as follows:



Higman's lemma

Let \sqsubseteq be a quasi-order on Λ

Define the induced monotone domination order \preccurlyeq on Λ^* as follows:

 $a_1 \dots a_m \preccurlyeq b_1 \dots b_n$ if there exists a strictly increasing function $f : \{1, \dots, m\} \mapsto \{1, \dots, n\}$ s.t $\forall \ 1 \le i \le m : a_i \sqsubseteq b_{f(i)}$

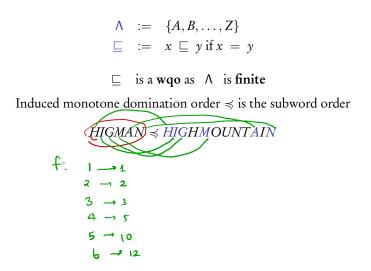
Higman'52

If \sqsubseteq is a wqo on $\Lambda,$ then the induced monotone domination order \preccurlyeq is a wqo on Λ^*

$$\Lambda := \{A, B, \dots, Z\} \sqsubseteq := x \sqsubseteq y \text{ if } x = y$$

$$\Lambda := \{A, B, \dots, Z\}$$
$$\sqsubseteq := x \sqsubseteq y \text{ if } x = y$$

 \sqsubseteq is a wqo as Λ is finite



 $\Lambda := \{A, B, \dots, Z\}$ $\sqsubseteq := x \sqsubseteq y \text{ if } x = y$

 $\sqsubseteq \text{ is a } \mathbf{wqo} \text{ as } \Lambda \text{ is finite}$ Induced monotone domination order \preccurlyeq is the subword order

 $HIGMAN \preccurlyeq HIGHMOUNTAIN$

By Higman's lemma, \preccurlyeq is a wqo too

If we start writing an **infinite sequence** of words, we will **eventually** write down a **superword** of an earlier word in the sequence

Step 1:

A naive procedure for universality of one-clock TA

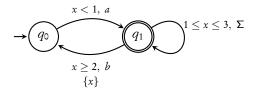
Terminology

Let $A = (Q, \Sigma, Q_0, \{x\}, T, F)$ be a timed automaton with one clock

• Location: $q_0, q_1, \dots \in Q$ q_1

► State: (q, u) where $u \in \mathbb{R}_{\geq 0}$ gives value of the clock $(q_1, 2, \varsigma)$

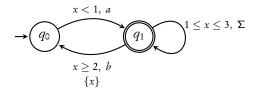
• Configuration: finite set of states $\left\{ \left(q_{1}, 2.5 \right), \left(q_{0}, 1.5 \right), \left(q_{0}, 7.7 \right) \right\} \right\}$



Terminology

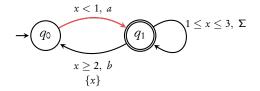
Let $A = (Q, \Sigma, Q_0, \{x\}, T, F)$ be a timed automaton with one clock

- Location: $q_0, q_1, \dots \in Q$
- ▶ State: (q, u) where $u \in \mathbb{R}_{\geq 0}$ gives value of the clock
- Configuration: finite set of states $\{(q_1, 2.3), (q_0, 0)\}$

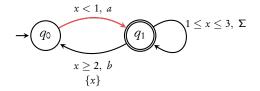


Goal: We want to check if Z(A) is universal. - Suppose A was deterministic. Complement and check for empliments. - Else, A is non-dekyministic : (a1, t1) (a2, t2) ... (an, tn) ξ(q₀, 0) } a > 91 Si= ti-tito=v {(q,, S,)(q2, D)} b2 an If neither 91 nor 92 is acupting, $\{(),(),(),()\}$ then we can be sure that (a_1, t_1) is not accepted by A, sing we have accumulated all the possible statu to which A goes on reading (a, th). If we have such a graph, then checking whether a timed word is accepted boils down to moving down to the Unique node in this graph that represents the timud word. That node contains all states reached by A on the word. It the node contain no accepting location, thus the word is rejected. Else accepted. - Does there exist a word which is rijected?

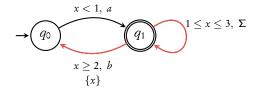
 $\{(q_0, 0)\} \xrightarrow{0.2, a}$



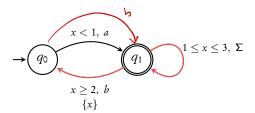
 $\{(q_0,0)\} \xrightarrow{0.2, a} \{(q_1,0.2)\}$



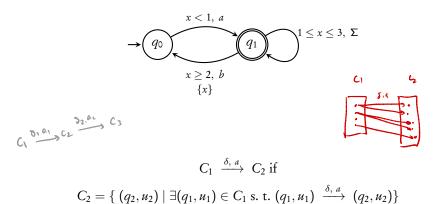
 $\{(q_0,0)\} \xrightarrow{0.2, a} \{(q_1,0.2)\} \xrightarrow{2.1, b}$



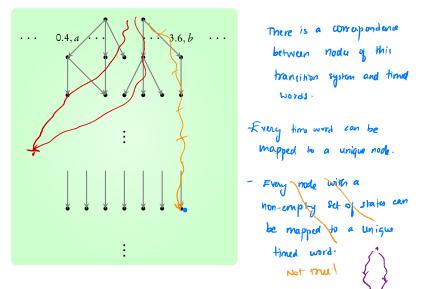
Transition between configurations: $\{(q_0, 0)\} \xrightarrow{0.2, a} \{(q_1, 0.2)\} \xrightarrow{2.1, b} \{(q_1, 2.3), (q_0, 0)\} \dots \xrightarrow{(q_1, b)} \{(q_1, 2.4), (q_0, 0)\}$ 10.01,6



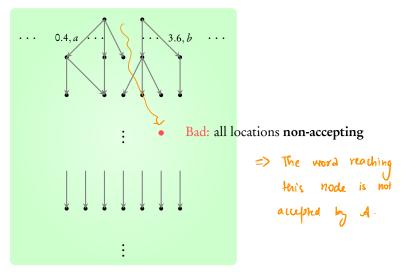
$$\{(q_0,0)\} \xrightarrow{0.2, a} \{(q_1,0.2)\} \xrightarrow{2.1, b} \{(q_1,2.3), (q_0,0)\} \dots$$



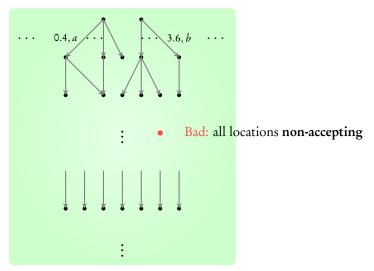
Labeled transition system of configurations



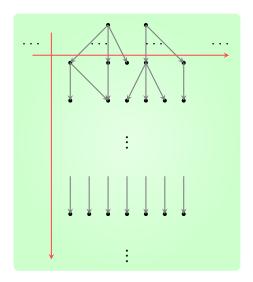
Labeled transition system of configurations



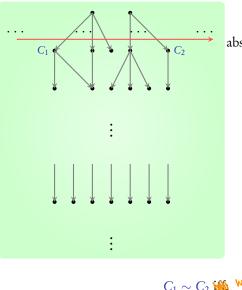
Labeled transition system of configurations



Is a **bad** configuration **reachable** from some **initial** configuration?



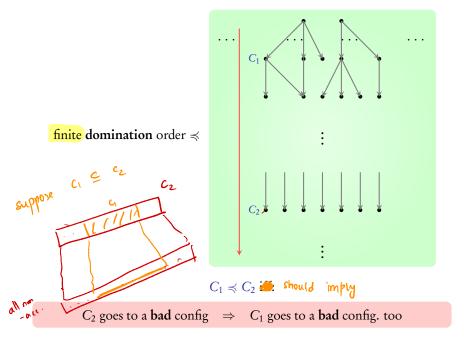
Need to handle two dimensions of infinity!

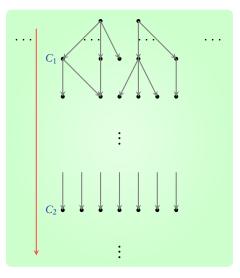


abstraction by equivalence \sim

 $C_1 \sim C_2$ is will imply

 C_1 goes to a **bad** config. \Leftrightarrow C_2 goes to a **bad** config.





finite **domination** order \preccurlyeq

 $C_1 \preccurlyeq C_2$ is should imply

 C_2 goes to a **bad** config \Rightarrow C_1 goes to a **bad** config. too

No need to explore C_2 !

