

LECTURE 1

- Timed languages
- Timed automata
- closure properties
- Motivation for the model.

 $\sum : alphabet \{a, b\}$ $\sum^* : words \{\varepsilon, a, b, aa, ab, ba, bb, aab, \dots\}$ $L \subseteq \sum^* : language \longrightarrow property over words$

 $L_1 := \{ \text{set of words starting with an " } a " \} \\ \{ a, aa, ab, aaa, aab, \dots \}$

 $L_2 := \{ \text{set of words with a non-zero even length } \} \\ \{ aa, bb, ab, ba, abab, aaaa, \dots \}$

 $\sum : \text{alphabet} \quad \{a, b\}$ $\sum^* : \text{words} \quad \{\varepsilon, a, b, aa, ab, ba, bb, aab, \dots\}$ $L \subseteq \Sigma^* : \text{language} \longrightarrow property over words$

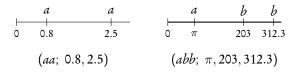
 $L_1 := \{ \text{set of words starting with an " } a " \} \\ \{ a, aa, ab, aaa, aab, \dots \}$

 $L_2 := \{ \text{set of words with a non-zero even length } \} \\ \{ aa, bb, ab, ba, abab, aaaa, \dots \}$

Finite automata, pushdown automata, Turing machines, ...

 Σ : alphabet $\{a, b\}$

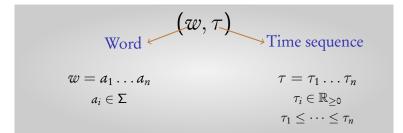
 $T\Sigma^*$: timed words



 Σ : alphabet $\{a, b\}$

 $T\Sigma^*$: timed words





 $L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

$$L_{1} := \{ (ab(a+b)^{*}, \tau) \mid \tau_{2} - \tau_{1} = 1 \}$$

$$L_{1} := \{ (ab(a+b)^{*}, \tau) \mid \tau_{2} - \tau_{1} = 1 \}$$

$$L_{1} := \{ (ab(a+b)^{*}, \tau) \mid \tau_{2} - \tau_{1} = 1 \}$$

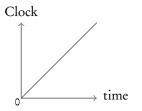
$$L_{2} := \{ (w, \tau) \mid \tau_{i+1} - \tau_{i} \ge 2 \text{ for all } i < |w| \}$$

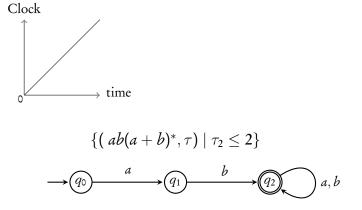
$$L_{2} := \{ (w, \tau) \mid \tau_{i+1} - \tau_{i} \ge 2 \text{ for all } i < |w| \}$$

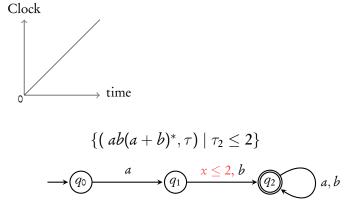
 $L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

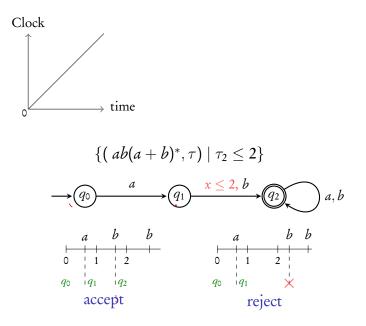
Timed automata

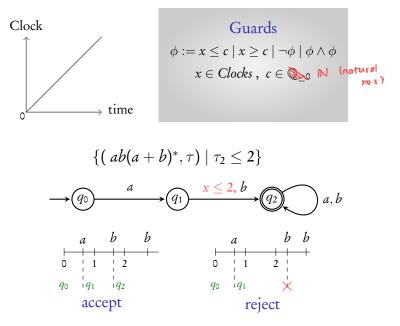
- Timed languages
 - Timed automata
 - closure properties
 - Motivation for the model.

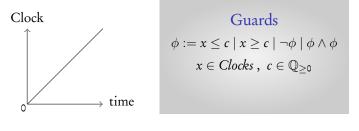


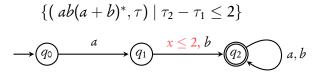


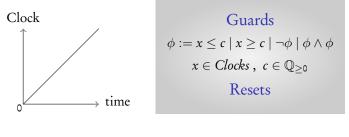


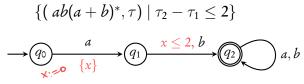


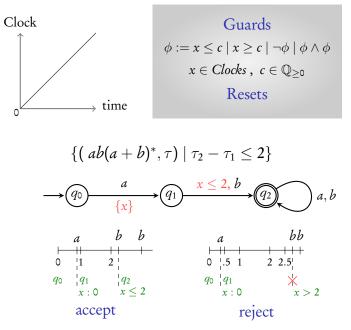






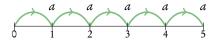






$$L_3 := \{ \left(\begin{array}{c} a^k, \tau \end{array} \right) \mid \underbrace{k > 0}_{i}, \ \tau_i = i \ \text{ for all } i \le k \}$$

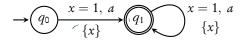
An "a" occurs in every integer from 1, ..., k



e

$$L_3 := \{ (a^k, \tau) | k > 0, \tau_i = i \text{ for all } i \le k \}$$

An "a" occurs in every integer from $1, \dots, k$



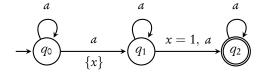
$$L_4 := \{ (a^k, \tau) | \text{ exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$$

There are 2 "*a*"s which are at distance 1 apart



$$L_4 := \{ (a^k, \tau) | \text{ exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$$

There are 2 "*a*"s which are at distance 1 apart

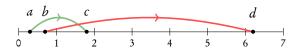


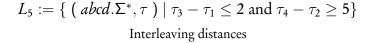
Three mechanisms to exploit:

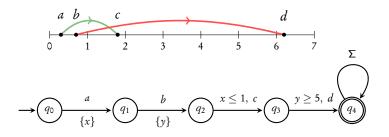
- Reset: to **start** measuring time
- Guard: to impose time constraint on action
- ► Non-determinism: for existential time constraints

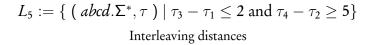
$$L_5 := \{ (abcd.\Sigma^*, \tau) | \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \}$$

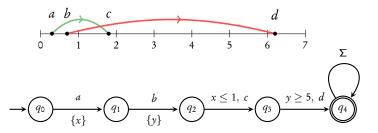
Interleaving distances







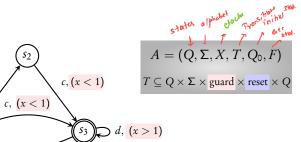




Exercise: Prove that L_5 cannot be accepted by a one-clock TA.

n interleavings \Rightarrow need *n* clocks

n + 1 clocks more expressive than n clocks



b, (y = 1)

\$1

 $a, \{y\}$

Semantics of a timed automaton:
d: Timed automaton.
What is the timed language of
$$4$$
?
When dow a timed automaton accept a timed word?
a, a, a, a, ... a,
T, Tz Tz Tz Tz Tz
Configurations:
(q, v)
state Valuation
Valuation: $X \rightarrow R_{20}$
 $(q, v) - \frac{S}{4elay}$
 $v(x) + S \forall e$
 $v = 4 \cdot S$
 $y = 2 \cdot S$

$$(q, v) \xrightarrow{a} (q_{1}, v_{1}) \xrightarrow{g} \frac{g_{1}e}{e} q_{1}$$

$$(q, v) \xrightarrow{a} (q_{1}, v_{1}) \xrightarrow{g} \frac{g_{1}e}{e} q_{1}$$

$$if \quad v \models g \quad (v \text{ satisfies } g)$$
and
$$v_{1} = [R]v$$

$$[R]v \quad (x) = 0 \quad \text{if } x \in R$$

$$= v(x) \quad v \text{ bornoise}$$

$$v : x = 5 \xrightarrow{g} v_{1} : x = 0$$

$$y = 2 \qquad R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

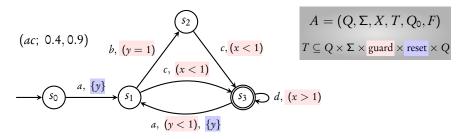
$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

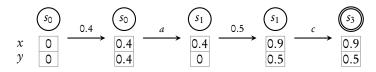
$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{2} = R = 5 \times 3 \qquad y = 2$$

$$Runs \quad o_{1} = R = 5 \times 3 \qquad y = 2$$

Accepting run: A run is accepting if it ends in an accepting state. Language of a T.A. $\mathcal{L}(\mathcal{A}) = \mathcal{L}(w, \tau)$ there exists an accepting two eq \mathcal{A} on (w, τ) 3 L. Timed WOYJA



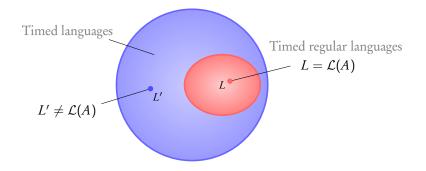


Run of A over $(a_1a_2...a_k; \tau_1\tau_2...\tau_k)$ $\delta_i := \tau_i - \tau_{i-1}; \tau_0 := 0$ $(q_0, v_0) \xrightarrow{\delta_1} (q_0, v_0 + \delta_1) \xrightarrow{a_1} (q_1, v_1) \xrightarrow{\delta_2} (q_1, v_1 + \delta_2) \cdots \xrightarrow{a_k} (q_k, v_k)$ $(w, \tau) \in \mathcal{L}(A)$ if A has an accepting run over (w, τ)

- Timed languages
- Timed automata
 - closure properties
 - Motivation for the model.

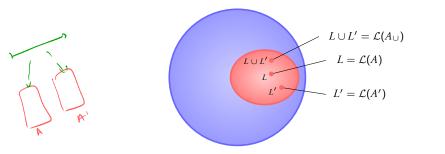
CLOSURE PROPERTIES

Timed regular languages



Definition

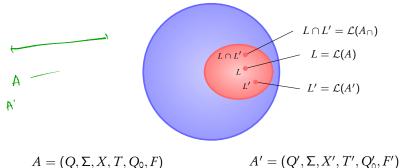
A timed language is called **timed regular** if it can be **accepted** by a timed automaton



 $A = (Q, \Sigma, X, T, Q_0, F) \qquad A' = (Q', \Sigma, X', T', Q'_0, F')$

 $A_{\cup} = (Q \cup Q', \Sigma, X \cup X', T \cup T', Q_0 \cup Q'_0, F \cup F')$ $\mathcal{L}(A) \cup \mathcal{L}(A') = \mathcal{L}(A_{\cup})$

Timed regular languages are closed under union



 $A_{\cap} = (Q \times Q', \Sigma, X \cup X', T_{\cap}, Q_0 \times Q'_0, F \times F')$

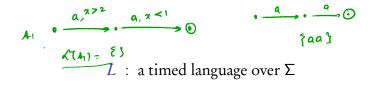
$$T_{\cap}: (q_{1},q_{1}') \xrightarrow{a, g \land g'} (q_{2},q_{2}') \text{ if}$$

$$\downarrow_{R} \land \downarrow_{n'} g'$$

$$q_{1} \xrightarrow{a, g}{R} q_{2} \in T \text{ and } q_{1}' \xrightarrow{a, g'}{R'} q_{2}' \in T'$$

g '°

Timed regular languages are closed under intersection



Untime(L)
$$\equiv \{w \in \Sigma^* \mid \exists \tau. (w, \tau) \in L\}$$

Untiming construction

For every timed automaton A there is a finite automaton A_{μ} s.t.

Untime($\mathcal{L}(A)$) = $\mathcal{L}(A_u)$

more about this later . . .

Complementation

$$\Sigma : \{a, b\}$$

$$L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and}$$
no action occurs at time $t + 1 \}$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at}$$
a distance 1 from it }

Complementation

 $\Sigma : \{a, b\}$

 $L = \{ (w, \tau) \mid \text{ there is an } a \text{ at some time } t \text{ and} \\ \text{no action occurs at time } t + 1 \}$

$$\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} \\ a \text{ distance 1 from it } \}$$

Claim: No timed automaton can accept \overline{L}

Decision problems for timed automata: A survey

Alur, Madhusudhan. SFM'04: RT

Step 1: $\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} a \text{ distance 1 from it } \}$

Suppose \overline{L} is timed regular

Step 1: $\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} a \text{ distance 1 from it } \}$

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two *a*'s happen at same time } $\lambda_1' = \{(a^* b_1^*) | a|| a'_3 \text{ occur} \\ \text{ being } \lambda_2^* \text{ Clearly } L' \text{ is timed regular} \}$ $L_2' = \frac{2}{2} (0^{*}b^{*}, \tau)$ no two a's happen at same time 3 A, ' for <1'

Step 1: $\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} a \text{ distance 1 from it } \}$

Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$

Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 1: $\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} a \text{ distance 1 from it } \}$ Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime($\overline{L} \cap L'$) = { $a^n b^m | m \ge n$ }, not regular!

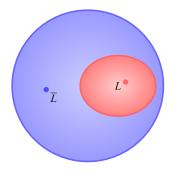
Step 1: $\overline{L} = \{ (w, \tau) \mid \text{ every } a \text{ has an action at} a \text{ distance 1 from it } \}$ Suppose \overline{L} is timed regular

Step 2: Let $L' = \{ (a^*b^*, \tau) \mid all a$'s occur before time 1 and no two a's happen at same time $\}$ Clearly L' is timed regular

Step 3: Untime($\overline{L} \cap L'$) should be a regular language

Step 4: But, Untime($\overline{L} \cap L'$) = { $a^n b^m | m \ge n$ }, not regular!

Therefore \overline{L} cannot be timed regular \Box



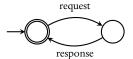
Timed regular languages are not closed under complementation

MOTIVATION FOR THE MODEL

Automata (*Finite State Machines*) are **good abstractions** of many real systems

hardware circuits, communication protocols, biological processes, ...

Automata can model many properties of systems



every request is followed by a response

Does system satisfy property?

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})?$$

Does system satisfy property?

Model-checking

$$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})$$
?

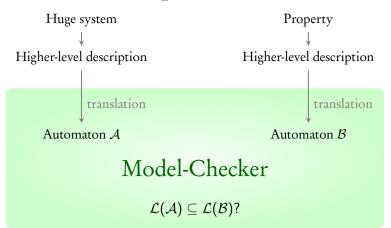
Does system satisfy property?

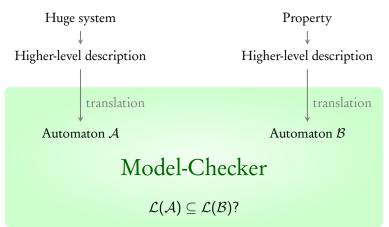
In practice...

Huge system

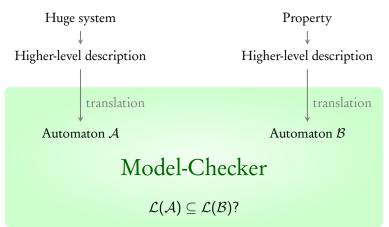
Property

Huge system ↓ Higher-level description $\begin{array}{c} Property \\ \downarrow \\ Higher-level description \end{array}$





Some model-checkers: SMV, NuSMV, SPIN, ...



Some model-checkers: SMV, NuSMV, SPIN, ...

Turing Awards: Clarke, Emerson, Sifakis and Pnueli

Automata are good abstractions of many real systems

Automata are good abstractions of many real systems

Our course: Automata for real-time systems

Picture credits: F. Herbreteau

pacemaker, vehicle control systems, air traffic controllers, ...

Timed Automata

R. Alur and D. Dill in early 90s

Timed Automata

R. Alur and D. Dill in early 90s

Some model-checkers: UPPAAL, KRONOS, RED, ...

Goals of our course

- Understand language theoretic properties of timed automata
- Study algorithms used in model-checkers

Model-checking caters to **both theory** enthusiasts and **practice** enthusiasts

Model-checking caters to **both theory** enthusiasts and **practice** enthusiasts

this course is a good starting point for model-checking real-time systems

SUMMARY

- Timed languages - Timed automata

 - closure properties - Motivation for the model.