- 1. Give an example of a timed automaton whose underlying graph is connected, but no accepting state is reachable.
- 2. Can you give an example of a timed automaton whose underlying graph is connected, but no accepting state is reachable, and whose only guards are upper bound guards: that is guards of the form x < c with c > 0 or $x \le c$ with $c \ge 1$? Note that there could be multiple upper bound guards with different constants.
- 3. The same question as above but now assume that the automaton has only lower bound guards: that is, guards of the form $x \ge c$ or x > c, with $c \ge 0$.
- 4. Let Z be the zone defined by $-3 \le y x \le 4$. Can you construct an automaton whose zone graph contains a node (q, Z)?
- 5. For two zones Z_1, Z_2 define a *difference* operation as follows:

$$Z_1 - Z_2 := \{ v \in Z_1 \mid v \notin Z_2 \}$$

Is $Z_1 - Z_2$ a zone? If yes, give a proof. If not, give a counterexample.

- 6. Provide an example of an automaton with a single state, $n \ge 2$ clocks and with M = 1, such that the zone graph along with the simulation relation \preccurlyeq_M gives at least 2^n nodes.
- 7. Which of the following two zones can be obtained during reachability analysis of some timed automaton? For this zone, provide a timed automaton path that leads to this zone.

$y - x \le 3$	$y - x \le 3$
$x - y \leq -1$	$x-y \leq 1$
$x \ge 2$	$x \ge 2$
$y \ge 4$	$y \ge 4$

8. Let \mathcal{A} be an automaton with a single clock. Are simulation relations necessary? Is there an example of such an automaton for which the naïve zone enumeration without simulations does not terminate?