1. Complement the following event-clock automaton:

2. Consider the following event-clock automaton:

- (a) Give an equivalent deterministic event-clock automaton.
- (b) Convert the above ECA into an equivalent timed automaton.
- 3. Let Σ and Γ be two finite alphabets. A homomorphism is a function $h: \Sigma \mapsto \Gamma$. This can be extended to timed words as follows:

$$h((a_1a_2...a_k, t_1t_2...t_k)) = (h(a_1)h(a_2)...h(a_k), t_1t_2...t_k)$$

Similarly, for a timed language L, we define $h(L) := \{ h((w,t)) \mid (w,t) \in L \}.$

Call a timed language L to be an event-clock language if there is an ECA accepting L.

Given timed language L over Σ , and homomorphism $h: \Sigma \mapsto \Gamma$.

- (a) Are event-clock languages closed under homomorphisms? That is, if L is an event-clock language, is h(L) also an event-clock language?
- (b) If h(L) is an event-clock language, is L an event-clock language?