In the lecture we have seen neighbourhood equivalence when there are only two clocks $\{x, y\}$. This can be extended to the general case with multiple clocks by considering clocks pairwise. Here is the definition.

Definition 1 (Neighbourhood equivalence) Two valuations v and v' are said to be neighbourhood equivalent, written as $v \simeq_{nbd} v'$ if:

- 1. $\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor$ for all clocks x,
- 2. $\{v(x)\} = 0$ iff $\{v'(x)\} = 0$ for all clocks x
- 3. for every pair of clocks x, y:
 - (a) $\{v(x)\} < \{v(y)\} \Leftrightarrow \{v'(x)\} < \{v'(y)\}$
 - (b) $\{v(x)\} = \{v(y)\} \Leftrightarrow \{v'(x)\} = \{v'(y)\}$

Each equivalence class of \simeq_{nbd} will be called a *neighbourhood*.

1. Group the following valuations over two clocks into neighbourhoods.

 $v_1 := (3.4, 7.2)$ $v_2 := (2.1, 10.0)$ $v_3 := (3.3, 7.4)$ $v_4 := (3.7, 7.2)$ $v_5 := (2.1, 10.1)$ $v_6 := (2.7, 10.0)$ $v_7 := (3.9, 7.4)$

2. Below are combinations of v, δ and v' with $v \simeq_{\mathsf{nbd}} v'$. For each of them, find a $\delta' \ge 0$ such that $v + \delta \simeq_{\mathsf{nbd}} v' + \delta'$.

$$v = (2.2, 3.7)$$
 $\delta = 0.3$ $v' = (2.1, 3.9)$ $v = (5.0, 8.2)$ $\delta = 3.8$ $v' = (5.0, 8.9)$ $v = (3.2, 2.1)$ $\delta = 0.9$ $v' = (3.7, 2.2)$ $v = (3.2, 2.1)$ $\delta = 2.9$ $v' = (3.7, 2.2)$

Recall that $v + \delta$ is the valuation obtained by adding δ to each coordinate of v.

3. Group the following valuations over five clocks into neighbourhoods.

4. Below are combinations of v, δ and v' with $v \simeq_{\mathsf{nbd}} v'$. For each of them, find a $\delta' \ge 0$ such that $v + \delta \simeq_{\mathsf{nbd}} v' + \delta'$.

 $\begin{aligned} v &= (1.1, \ 2.0, \ 3.0, \ 4.0, \ 5.9) & \delta = 3.4 & v' &= (1.5, \ 2.0, \ 3.0, \ 4.0, \ 5.6) \\ v &= (10.2, \ 4.8, \ 19.1, \ 2.0, \ 8.5) & \delta = 5.4 & v' &= (10.1, \ 4.9, \ 19.05, \ 2.0, \ 8.7) \end{aligned}$

5. Now we look at the general case. Let v, v' be valuations such that $v \simeq_{\mathsf{nbd}} v'$. Show that for every $\delta \ge 0$, there exists a $\delta' \ge 0$ such that $v + \delta \simeq_{\mathsf{nbd}} v' + \delta'$