
The untiming construction for timed
automata

B. Srivathsan

Chennai Mathematical Institute, India

In this document we explain the following theorem, which was proved in [AD94].

Theorem 1 For every timed automaton A, there exists a finite automaton accepting its
untimed language Untime(L(A)).

A näıve approach is to consider the finite automaton obtained by removing the guards
and resets from A. This is incorrect: consider a timed automaton A0 consisting of two

transitions: q0
a, x>2−−−−→ q1

a, x<1−−−−→ q2, with q0 being the initial state and q2 the final state. The
timed language L(A0) is empty, whereas the language of the finite automaton obtained by
the näıve construction is {aa}. This example illustrates that in order to detect the untimed
sequences that have a timed extension, we need to track the clock values at each stage of the
sequence. In the next sections, we will see how this can be done using finitely many states.
We start this document with some preliminary notions and then continue to describing two
equivalence relations which lead to the construction of the final finite state automaton.

1 Preliminaries

Let R≥0 denote the set of non-negative reals. A clock is a variable that ranges over R≥0.
Let X be a set of clocks. A clock constraint φ is a conjunction of comparisons of a clock
with a constant, given by the following grammar:

φ := x ∼ c | φ ∧ φ

where x ∈ X, ∼∈ {<,≤,=,≥, >} and c ∈ N. For example, (x ≤ 3 ∧ y > 0) is a clock
constraint. Let Φ(X) denote the set of clock constraints over the set of clocks X.

Remark 2 Notice that we have chosen only integer constants in the clock constraints.

Definition 3 (Clock valuation) A clock valuation over X is a function v : X → R≥0
that maps each clock to a non-negative real. The set of all clock valuations is denoted by
RX
≥0.

1

2 The untiming construction for timed automata

q0 q1q2

a, {x}

b, x ≤ 2

c, y > 5

Figure 1.1: A timed automaton A1

For example, 〈x = 0.45, y = 7.7, z = 15〉 is a valuation when X = {x, y, z}. When the set
of clocks and the order are clear from the context, we will just write 〈0.45, 7.7, 15〉.

We denote by 0 the valuation that associates 0 to every clock in X. A valuation v
is said to satisfy a constraint φ, written as v � φ, when every constraint in φ holds after
replacing every x by v(x). For example, 〈x = 0.4, y = 9.3, z = 4.6〉 |= (x < 5) ∧ y > 4, but
〈x = 0.4, y = 9.3, z = 4.6〉 6|= (z ≤ 4).

For δ ∈ R≥0, let v + δ be the valuation that associates v(x) + δ to every clock x. For
instance, 〈0.4, 9.3, 4.6〉 + 5.1 = 〈5.5, 14.4, 9.7〉. We will use this notation to talk about the
valuations that arise after a δ time-elapse from v.

For R ⊆ X, let [R]v be the valuation that sets x to 0 if x ∈ R, and that sets x to v(x)
otherwise. For example, [{x, y}]〈0.4, 9.3, 4.6〉 = 〈0, 0, 4.6〉. This notation would be used to
denote the valuation that is obtained from v after resetting clocks in R.

For a valuation v and a clock x, we denote the integral part of v(x) by bv(x)c and the
fractional part of v(x) by {v(x)}. We write / to mean either ≤ or <, and . to mean either
≥ or >.

Let us start with a formal definition of a timed automaton.

Definition 4 (Timed automaton [AD94]) A Timed Automaton (TA) is a tuple A =
(Q,Σ, X, T, q0,Acc) where Q is a finite set of states, Σ is a finite alphabet, X is a finite
set of clocks, q0 ∈ Q is the initial state, Acc ⊆ Q is a set of accepting (final) states,
T ⊆ Q×Σ×Φ(X)× 2X ×Q is a finite set of transitions (q, a, g, R, q′) where a is a letter
in Σ, g is a clock constraint called the guard, and R is the set of clocks that are reset on
the transition. We will call these transitions in a timed automaton as edges.

Remark 5 For technical convenience, we choose to have a single initial state q0 ∈ Q
instead of a set of initial states Q0 ⊆ Q. For the algorithm that we propose, this does not
make any difference. One can easily extrapolate it to the case of multiple initial states.

Figure 1.1 gives an example of a time automaton. The behaviour of a timed automaton
is described by an infinite transition system1 as illustrated in Figure 1.2. We will call it the

semantics of a timed automaton. For example, the transition (q1, 〈0, 1.3〉)
2,b−→ (q0, 〈2, 3.3〉)

means that when the timed automaton is in state q1 with values of clocks 〈0, 1.3〉, it can
elapse 2 units of time and fire the edge (q1, b, x ≤ 2, {}, q0) and go to the configuration
(q0, 〈2, 3.3〉). Here is the formal definition of this infinite transition system.

1A transition system is essentially an automaton, except that we do not associate any language to it.
We only care about the states and transitions between them.

Preliminaries 3

· · · · · · · · ·
· · ·

· · ·

· · ·

(q0, 〈0, 0〉)

(q1, 〈0, 0〉) (q1, 〈0, 1.3〉) (q1, 〈0, 10.9〉) (q1, 〈0, 100〉)

(q0, 〈0, 1.3〉) (q0, 〈2, 3.3〉)

· · · (q2, 〈3.75, 5.05〉) (q2, 〈12, 13.3〉)

...
...

...

...

...
...

0, a 100, a

1.3, a 10.9, a

0, b 2, b

1.75, c 10, c

Figure 1.2: Part of the transition system showing the behaviours of the timed automaton A1 of
Figure 1.1

Definition 6 (Semantics of a timed automaton) Let A be a timed automaton. The
semantics of A is given by a transition system SA whose nodes are configurations (q, v)
consisting of a state q of A and a valuation v giving the values of clocks. The initial
configuration is given by (q0,0) with q0 being the initial state of A. The transitions are

labeled with letters from R≥0×Σ. There is a transition (q, v)
δ,a−→ (q1, v1) if there exists an

edge (q, a, g, R, q1) in the timed automaton such that v + δ |= g and v1 = [R]v.

Definition 7 (Timed words, timed runs and timed language) A timed word is a
pair (w, τ) consisting of a word w = a0a1 · · · ak ∈ Σ∗ and a time sequence τ = τ0τ1 · · · τk of
non-negative reals such that τ0 ≤ τ1 ≤ · · · ≤ τk.

A run of A on a timed word (a0a1 · · · ak, τ0τ1 · · · τk) is a path in SA starting from (q0,0):

(q0, v0)
δ0,a0−−−→ (q1, v1)

δ1,a1−−−→ (q2, v2)
δ2,a2−−−→ . . .

δk,ak−−−→ (qk+1, vk+1)

such that δ0 = τ0 and δi = τi − τi−1 for 1 ≤ i ≤ k. The run is accepting if qk+1 is an
accepting state.

The timed language of the timed automaton, denoted as L(A), is the set of timed words
(w, τ) such that A has an accepting run on (w, τ).

For example the timed language L(A1) of the timed automaton in Figure 1.1
is the union of timed words (c, τ) with τ > 5 along with timed words of the form
((ab)kc, τ1τ

′
1τ2τ

′
2 · · · τkτ ′kτ) with k ≥ 1 such that τ ′i − τi ≤ 2 for all 1 ≤ i ≤ k and τ > 5.

Definition 8 (Untimed language) For a timed language L over Σ, we define
Untime(L) := {w ∈ Σ∗ | (w, τ) ∈ L}.

Notice that for a timed automatonA, the language Untime(L(A)) is the set of sequences
a0, a1, . . . , ak such that there is a path (δ0, a0)(δ1, a1) · · · (δk, ak) in SA. Therefore, if we erase

4 The untiming construction for timed automata

the δ part in the transitions of SA and look at the underlying system, it will be an infinite
automaton for Untime(L(A)) where there is an edge (q, v)

a−→ (q1, v1) if there exists a δ

such that (q, v)
δ,a−→ (q1, v1) in SA. In the next sections, we will try to merge valuations

into buckets so that the untimed behaviour of SA can be mimicked, and yet we have only
finitely many buckets.

2 Neighbourhood equivalence

As a first task we divide the space RX
≥0 into units that are indistinguishable by guards

containing integer constants. These units will be called neighbourhoods.

Definition 9 (Neighbourhood equivalence) Two valuations v and v′ are said to be
neighbourhood equivalent, written as v 'nbd v

′ if:

1. bv(x)c = bv′(x)c for all clocks x,

2. {v(x)} = 0 iff {v′(x)} = 0 for all clocks x

3. for every pair of clocks x, y:

(a) {v(x)} < {v(y)} ⇔ {v′(x)} < {v′(y)}
(b) {v(x)} = {v(y)} ⇔ {v′(x)} = {v′(y)}

Each equivalence class of 'nbd will be called a neighbourhood. We write nbd(v) for the
neighbourhood of v.

Remark 10 Notice that the condition 3 with two sub-conditions (a) and (b) can be re-
placed with a single condition: for every pair of clocks x, y, we have {v(x)} ≤ {v(y)} ⇔
{v′(x)} ≤ {v′(y)}. Proving that this replacement results in an equivalent definition is left
as an exercise.

Lemma 11 Let v 'nbd v
′. For every δ ≥ 0, there exists a δ′ ≥ 0 such that v+δ 'nbd v

′+δ′.

Proof
First choose bδ′c to be bδc. This choice ensures v + bδc 'nbd v

′ + bδ′c. Let x1 l1 x2 l2

· · · lk−1 xk be the ordering of fractional parts in both the valuations, where l denotes
either < or =. This ordering is the same in both v and v′ due to the third condition in the
definition of 'nbd.

From v + bδc, elapsing a fractional amount {δ} might move some of the clocks up to
the next integer. Let xj, xj+1, . . . , xk be the clocks that have their integral values increased
from v + bδc due to the fractional elapse {δ}. Thanks to the denseness of the real line,
one can choose {δ′} between the fractional values of clocks xj−1 and xj in v′ + bδ′c so that
v′+δ′ has the same integers as v+δ, the same clocks have fractional parts zero, and finally
the same ordering of fractional parts between v + δ and v′ + δ′. �

Lemma 12 Let v 'nbd v
′. Then, v |= φ iff v′ |= φ for every clock constraint φ ∈ Φ(X).

Neighbourhood equivalence 5

Proof
This follows due to the first two conditions in the definition of 'nbd. �

Lemma 13 Let v 'nbd v
′. Then, [R]v 'nbd [R]v′ for every subset R of clocks.

Proof
Follows by definition, and the hypothesis v 'nbd v

′. �

The above three lemmas give the following property of the semantics SA.

Proposition 14 Let (q, v)
δ,a−→ (q1, v1) be a transition in SA. For every v′ ∈ nbd(v), there

exists a transition (q, v′)
δ′,a−−→ (q1, v

′
1) in SA such that v′1 ∈ nbd(v1).

Definition 15 (Neighbourhood automaton) Given a timed automaton A, we define
an infinite state automaton nbdAutomaton(A) called the neighbourhood automaton.
Its states are pairs (q, nbd(v)) for every state q of A and every valuation v ∈ RX

≥0.

For every (q, v)
δ,a−→ (q1, v1) in SA, there is a transition (q, nbd(v))

a−→ (q1, nbd(v1)) in
nbdAutomaton(A). Initial state is (q0, nbd(0)) where q0 is the initial state of A. Final
states are (q, nbd(v)) where q is a final state of A.

Proposition 16 For every run (q0, nbd(0))
a0−→ (q1, nbd(v1))

a1−→ · · · an−→ (qn+1, nbd(vn+1))

of nbdAutomaton(A) there exists a run (q0,0)
δ0,a0−−−→ (q1, v

′
1)

δ1,a1−−−→ (q2, v
′
2)

δ2,a2−−−→ · · · δn,an−−−→
(qn+1, v

′
n+1) such that v′i ∈ nbd(vi) for all 0 ≤ i ≤ n+ 1.

Proof
Proof proceeds by induction on i. For the base case i = 0, notice that (q0,0) with 0 ∈
nbd(0) exists in SA.

Assume that we have proved the lemma for i = k, that is we have constructed a run

(q0,0)
δ0,a0−−−→ (q1, v

′
1)

δ2,a2−−−→ · · · δk−1,ak−1−−−−−→ (qk, v
′
k). Therefore, there is a run in SA lead-

ing to (qk, uk with uk ∈ nbd(vk). By definition of the transitions in nbdAutomaton(A),

the presence of a transition (qk, nbd(vk))
ak−→ (qk+1, nbd(vk+1)) entails that there exists a

transition (qk, vk)
δ,ak−−→ (qk+1, vk+1) in SA such that vk ∈ nbd(vk) and vk+1 ∈ nbd(vk+1).

Then, from Proposition 14, there exists a transition (qk, v
′
k)

δ′,ak−−→ (qk+1, v
′
k+1) such that

v′k+1 ∈ nbd(vk+1). This gives an extension to the run obtained by the induction hypothesis,
thereby proving the induction step. �

Proposition 17 For every run (q0,0)
δ0,a0−−−→ (q1, v1)

δ1,a1−−−→ · · · δn,an−−−→ (qn, vn) of SA there
exists a run (q0, nbd(0))

a0−→ (q1, nbd(v1))
a1−→ · · · an−→ (qn, nbd(vn)) in nbdAutomaton(A).

Proof
This follows directly from the definition of transitions in nbdAutomaton(A). �

Propositions 16 and 17 lead to the following theorem.

Theorem 18 The infinite state automaton nbdAutomaton(A) accepts Untime(L(A)).

6 The untiming construction for timed automata

x

y

0

My

Mx

12 corner points, e.g. (2,1)
30 open line segments, e.g. 1 < x = y < 2
18 open regions, e.g. 0 < x < y < 1

Figure 1.3: Division into regions with two clocks x and y [AD94].

The nbdAutomaton(A) is in some sense better than SA since its alphabet is Σ and it
has countably many states, unlike SA whose alphabet was R≥0 ×Σ and whose states were
uncountably infinite. In the next section, we perform a further merge of neighbourhoods
into finitely many equivalence classes called regions.

3 Region equivalence

Let X be a finite set of clocks. Let M : X 7→ N∪{−∞} be a bound function that associates
a constant Mx ∈ N to every clock x. This is a slight generalization from what we saw in
class, where considered a single constant M for all clocks.

Definition 19 (Region equivalence [AD94]) Two valuations v, v′ ∈ RX
≥0 are region

equivalent w.r.t. M , denoted v ∼M v′ iff for every x, y ∈ X:

1. v(x) > Mx iff v′(x) > Mx;

2. if v(x) ≤Mx, then bv(x)c = bv′(x)c;

3. if v(x) ≤Mx, then {v(x)} = 0 iff {v′(x)} = 0;

4. if v(x) ≤Mx and v(y) ≤My then {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}.

Given an automaton A, a bound function is obtained by choosing for a clock x, the
maximum constant appearing in a guard involving x. Then, the first three conditions in
the above definition ensure that the two valuations satisfy the same guards. The last one
enforces that for every δ ∈ R≥0 there is δ′ ∈ R≥0, such that valuations v + δ and v′ + δ′

satisfy the same guards.

Definition 20 (Region [AD94]) Let M : X 7→ N ∪ {−∞} be a bound function. A
region is an equivalence class of ∼M . We write [v]M for the region of v, and RM for the set
of all regions with respect to M .

Figure 1.3 shows the division into regions when there are two clocks x and y. We
also give below a constructive definition of regions which would be useful to estimate the
number of regions.

Region equivalence 7

Definition 21 (Region: constructive definition [AD94]) A region with respect to
bound function M is a set of valuations specified as follows:

1. for each clock x ∈ X, one constraint from the set:

{x = c | c = 0, . . . ,Mx} ∪ {c− 1 < x < c | c = 1, . . . ,Mx} ∪ {x > Mx}

2. for each pair of clocks x, y having interval constraints: c−1 < x < c and d−1 < y < d,
it is specified if {x} is less than, equal to or greater than {y}.

If r is a region then we will write r � g to mean that every valuation in r satisfies the
guard g. It is straightforward to see that if a valuation v ∈ r satisfies the guard g, then
every valuation v′ ∈ r satisfies g. We will now show the other property with respect to
time-elapse mentioned above.

Lemma 22 Let v, v′ be valuations such that v′ ∼M v. Then, for all δ ∈ R≥0, there exists
a δ′ ∈ R≥0 such that v′ + δ′ ∼M v + δ.

Proof
We know v′ ∼M v and we are given δ. We need to choose δ′. Put bδ′c to be bδc. Clearly,
we have v′+bδ′c ∼M v+bδc: that is, valuations v′+bδ′c and v+bδc have the same integral
parts and the same ordering of fractional parts (modulo M). Let x1 /1 x2 /2 . . . /k−1 xk
be the ordering of fractional parts of clocks less than M in both the valuations. Here /
denotes either < or =.

From v + bδc, elapsing a fractional amount {δ} might move some of the clocks up to
the next integer. Let xj, xj+1, . . . , xk be the clocks that have their integral values increased
from v + bδc due to the fractional elapse {δ}. Thanks to the denseness of the real line,
one can choose {δ′} between the fractional values of clocks xj−1 and xj in v′ + bδ′c so that
v′ + δ′ has the same integers as v + δ and the same ordering of fractional parts (modulo
M). �

Given a bound function M , the number of regions in RM is finite. Once this finite
partition of the valuations is obtained, we proceed to define a finite graph built from these
regions, that captures the behaviour of the timed automaton.

For an automaton A, to define its region graph, we consider a bound function MA that
is obtained from the automaton’s definition.

Definition 23 (Maximal bounds) Given an automaton A, the maximal bounds func-
tion MA : X 7→ N ∪ {−∞} associates to each clock x the biggest constant appearing in a
guard of the automaton that involves x. If there is no guard involving x, then MA(x) is
assigned −∞.

We define the region automaton of A using the ∼MA relation.

Definition 24 (Region automaton [AD94]) States of the region automaton are of the
form (q, r) for q a state of A and r ∈ RMA a region. There is a transition (q, r)

a−→ (q′, r′)
if there is a transition t := (q, a, g, R, q′), valuations v ∈ r, δ ∈ R≥0 and v′ ∈ r′ with

(q, v)
δ,t−→ (q′, v′). The initial state of the region automaton is (q0, [0]∼MA

) where [0]∼MA

8 The untiming construction for timed automata

(q0, 0 = x = y)

(q1, 0 = x = y) (q1, 0 = x ∧ 0 < y < 1) (q1, 0 = x ∧ y > 5)

(q0, 0 < x < y < 1) (q0, 0 < x < 1 ∧ y = 1) (q0, x = 2 ∧ 2 < y < 3)

(q2, x > 2 ∧ y > 5)

· · ·

· · ·

Figure 1.4: Part of region automaton of the timed automaton A1 shown in Figure 1.1

represents the region to which the initial valuation 0 belongs to. A state (q, r) is accepting
in the region automaton if q is an accepting state of A. We denote the region automaton
of A as RA(A).

Figure 1.4 shows a part of the region automaton RA(A1) of the automaton A1 shown
in Figure 1.1.

It will be important to understand next the property of regions, similar to Proposition 14
shown for neighbourhoods. This property has been called pre-stability of regions [?].

Lemma 25 (Pre-stability of regions) Let A be an automaton. Transitions in RA(A)
are pre-stable: in each transition (q, r)

a−→ (q′, r′), for every v ∈ r there is a δ ∈ R≥0 and a

valuation v′ ∈ r′ such that (q, v)
δ,a−→ (q′, v′)

Proof
By definition of the region graph, a transition (q1, r1)

a−→ (q2, r2) exists in RA(A) if there

are v1 ∈ r1, δ ∈ R≥0 and v2 ∈ r2 with (q1, v1)
δ,a−→ (q2, v2).

Let the corresponding transition be (q1, a, g, R, q2). Pick a valuation v′1 ∈ r1. By
Lemma 22, there exists a δ′ such that v1 + δ and v′1 + δ′ belong to the same region. We
know that valuations within the same region satisfy the same guards. Therefore since
v1 + δ � g, we get that v′1 + δ′ � g too. From the definition of region equivalence, we get
that regions are stable under projection to a subset of clocks and in particular, this entails
that [R](v′1 + δ′) belongs to the same region as [R](v1 + δ). �

We will now establish the correspondence between paths of the region graph and runs
of the automaton. Consider two sequences

(q0, v0)
δ0,a0−−−→ (q1, v1)

δ1,a1−−−→ · · · (qn, vn) (1.1)

(q0, r0)
a0−→ (q1, r1)

a1−→ · · · (qn, rn) (1.2)

where the first is a run in A, and the second is a path in RA(A). We say that the first
is an instantiation of the second if vi ∈ ri for all i ∈ {1, . . . , n}. Equivalently, we say that

Region equivalence 9

the second is an abstraction of the first. The following proposition is a direct consequence
of the pre-stability property (similar in spirit to the Propositions 16 and 17).

Proposition 26 Every path in RA(A) is an abstraction of a run of A, and conversely,
every run of A is an instantiation of a path in RA(A).

The above lemma shows that the region graph is sound and complete for state reacha-
bility.

Theorem 27 ([AD94]) Automaton A has an accepting run iff there is a path in the region
graph RA(A) starting from its initial node to an accepting node.

The above theorem also gives an algorithm for solving the emptiness problem for timed
automata: given a timed automaton, construct its region automaton and check for its
emptiness. However this method is impractical. The number of regions obtained using a
bound function M is O

(
|X|! · 2|X| ·

∏
x∈X(2Mx + 2)

)
[AD94] and constructing all of them,

or even searching through them on-the-fly, has proved to be very costly. Later during the
course, we will look at more efficient solutions to this problem.

10 The untiming construction for timed automata

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

11

	The untiming construction for timed automata
	Preliminaries
	Neighbourhood equivalence
	Region equivalence

