1. The purpose of this question is to understand the algorithm by Ouaknine and Worrell for checking the universality of one-clock timed automata. Let us call it the OW-algorithm. The definitions and notations used in this question are identical to those in the lecture.

Consider the following automaton over the singleton alphabet $\{a\}$:

The set of regions $REG = \{r_0, r_{01}, r_1, r_{12}, r_2, r_{2\infty}\}$

- a) What is the set Λ ? Recall that nodes in the graph built by the OW-algorithm would be labeled by words in Λ^* .
- b) Consider the word $W = \{(q_1, r_0)\}\{(q_2, r_{01})\}$. List two different configurations C_1 and C_2 of the automaton that map to this word by the encoding H defined in the lecture, i.e., $H(C_1) = H(C_2) = W$.
- c) For the C_1 and C_2 that you have chosen, prove that for $\delta_1 = 1.3$, there exists a $\delta_2 \in \mathbb{R}_{>0}$ such that

if
$$C_1 \xrightarrow{\delta_{1,a}} C'_1$$
 then $C_2 \xrightarrow{\delta_{2,a}} C'_2$

such that $H(C'_1) = H(C'_2)$.

- d) Run the OW-algorithm on the above automaton and check if it accepts all timed words.
- 2. Given a general timed automaton B and a one-clock timed automaton A design an algorithm for $L(B) \subseteq L(A)$.
- 3. We know that the universality problem for one-clock timed automata is decidable. Suppose we consider timed automata with multiple clocks, but restrict guards to contain only the constant 0; that is, for a set of clocks X, the guards come from the set $\Phi_0(X)$ defined inductively as

$$\Phi_0(X) := x = 0 \mid x > 0 \mid \Phi_0(X) \land \Phi_0(X)$$

where $x \in X$. For instance, if $y, z \in X$, then $y = 0 \land z > 0$ is a guard in $\Phi_0(X)$.

Show that the universality problem is decidable for timed automata with multiple clocks, but whose guards come only from the set $\Phi_0(X)$.