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Theorem (Lecture 2)

Deterministic timed automata are closed under complement

1. Unique run for every timed word

2. Complementation: Interchange acc. and non-acc. states

w1 2 L(A) w2 /2 L(A) w1 /2 L(A) w2 2 L(A)
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Theorem (Lecture 1)

Non-deterministic timed automata are not closed under complement

Many runs for a timed word

w1 2 L(A)

Exists an acc. run

w2 /2 L(A)

All runs non-acc.

Complementation: interchange acc/non-acc + ask are all runs acc. ?
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A timed automaton model with existential and universal

semantics for acceptance
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Lecture 5:
Alternating timed automata

Lasota and Walukiewicz. FoSSaCS’05, ACM TOCL’2008
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Section 1:

Introduction to ATA
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I X : set of clocks

I �(X) : set of clock constraints � (guards)

� : x < c | x  c | �1 ^ �2 | ¬�

c is a non-negative integer

I Timed automaton A: (Q,Q0,⌃,X,T , F)

T ✓ Q ⇥ ⌃⇥ �(X)⇥ Q ⇥ P(X)
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T ✓ Q ⇥ ⌃⇥ �(X)⇥ Q ⇥ P(X)

T : Q ⇥ ⌃⇥ �(X) 7! P(Q ⇥ P(X))

q

a, g

q1, r1 q2, r2 q3, r3 q4, r4 q5, r5

_ _ _ _
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T ✓ Q ⇥ ⌃⇥ �(X)⇥ Q ⇥ P(X)
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q

a, g
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T : Q ⇥ ⌃⇥ �(X) 7! P(Q ⇥ P(X))

B+(S) is all � ::= S | �1 ^ �2 | �1 _ �2

T : Q ⇥ ⌃⇥ �(X) 7! B+(Q ⇥ P(X))

q

a, g

(q1, r1 q2, r2) (q3, r3) (q4, r4 q5, r5 q6, r6)^ _ _ ^ ^
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Alternating Timed Automata

An ATA is a tuple A = (Q, q0,⌃,X,T , F) where:

T : Q ⇥ ⌃⇥ �(X) 7! B+(Q ⇥ P(X))

is a finite partial function.

Partition: For every q, a the set

{ [�] | T (q, a, �) is defined }

gives a finite partition of RX
�0
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Acceptance

q

a, g

(q1, r1 q2, r2) (q3, r3) (q4, r4 q5, r5 q6, r6)
V W W V V

Accepting run from q iff:

I accepting run from q1 and q2,

I or accepting run from q3,

I or accepting run from q4 and q5 and q6
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L : timed words over {a} containing no two a0s at distance 1
(Not expressible by non-deterministic TA)

ATA:

q0, a, tt 7! (q0, ;) ^ (q1, {x})

q1, a, x = 1 7! (q2, ;)

q1, a, x 6= 1 7! (q1, ;)

q2, a, tt 7! (q2, ;)

q0, q1 are acc., q2 is non-acc.
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0.8 ) Cal ! ) fail -2) E L ?

(9007

"

"' l
.

Gao.es
.

.
.

,

ke 't' 'ru

o - (90,01711191143) ↳ Adam wine .

⇒
w of L .

Eve . Adam
( go , a. true)i→ 190,47 A ' '

'm)
=

1.
=

* (q, , a , att
) '→ ( 91 " f)

Exists for All

(oh ,

a
,
a- t) '→ (92 , f )

( 92 ,
a. true) '→

(9210)
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in the play is accepting .



(
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- b = b , A bz : Adam chooses a subformula

and game continues with the sub formula .

- b =
b , v.bz

: Eve

- b = ( q , r) E Qxpce)

-

Phase ends with

19kt, . Yet,) :=
19, . I Cr :=o

) )
→ Play ends with Gn#nail

- Eye wins the play it 9nµ is accepting .

- w e Lcs) if Rae has a strategy to win Gssw .

Else w # Lct ) .



Closure properties

I Union, intersection: use disjunction/conjunction

I Complementation: interchange

1. acc./non-acc.

2. conjunction/disjunction

No change in the number of clocks!
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Section 2:

The 1-clock restriction

14/29



I Emptiness: given A, is L(A) empty

I Universality: given A, does L(A) contain all timed words

I Inclusion: given A,B, is L(A) ✓ L(B)

Undecidable for two clocks or more (via Lecture 3)

Decidable for one clock (via Lecture 4)

Restrict to one-clock ATA
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Theorem

Languages recognizable by 1-clock ATA and (many clock) TA
are incomparable

! proof on the board
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Alternation lls . Multiple clocks :
- - -

Alternation. # For every pint , 3- another at
-

distance c .

31

Multiple cloche:
° .

-
a ax

£2

Interleaving . #
ii I

Need multiple clock.

Example L : no a 's at distance 1 . → 1- clock ATA .

but no NTA .

Interleaving leg . need multiple clocks , but no I - ATA

→ proper proof in the next class .



Section 3:

Complexity

17/29

- Emptiness for 1 - clock ATA is decidable .

↳ Proof goes along
similar lines as

proof of decidability of

universality of l - clock NTA -

- LIBI E LIA?
B is an NTA .

↳ Ais l - och ATA ,
-

.

↳ decidable .

i



Lower bound

Complexity of emptiness of purely universal 1-clock ATA is
not bounded by a primitive recursive function

) complexity of Ouaknine-Worrell algorithm for
universality of 1-clock TA is non-primitive recursive
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summary
- ATA

↳ closed under union , intersection
, complement

- Emptiness is undecidable in general for ATA .

- Restricting to 1- Clock ATA makes emptiness & universality
decidable .

-

further : LIBI E LIST when B is NTA

A is l - clock ATA

is decidable -

Proof similar to Ouahnine - Worrell algorithm .

- I - clock ATA and (many clock) NTA are incomparable
w - r- t - expressive power .

Next :

- Proof of incomparable expressive power
- Primitive recursive functions / Non - primitive recursive complexity .


