
Operations on Zones

B. Srivathsan

Chennai Mathematical Institute, India

As we saw in the last lecture, the reachability algorithm works with special sets of
valuations called zones. There are two important computations involving zones: successor
computation, and inclusion with respect to ClosureM . In this lecture, we will see how the
successor can be computed efficiently.

Recall from the last lecture that the successor computation (q, Z) ⇒t (q′, Z ′) for a
transition t = (q, g, R, q′) proceeds in the following steps.

(q, Z)
guard−−−→ (q, Z ∧ g)

reset−−−→ (q, [R](Z ∧ g))
elapse−−−→ (q, Z ′)

In the above, Z ∧ g represents the set of valuations that satisfy the constraints of both
Z and g; the set [R](Z ∧ g) represents the set of valuations obtained by resetting clocks in
R from every valuation in Z ∧ g and finally Z ′ is the set of valuations obtained by elapsing
an arbitrary amount of time from each valuation in [R](Z ∧ g). We will see each of these
operations in detail. But before that, we need a convenient way of representing zones.

1 Representing zones

Consider an arbitrary zone as shown in Figure 1. A zone gets defined by six constraints for
every pair of variables as shown in the figure. Each constraint is a half-space. The standard
way to represent a zone is to consider a Difference Bound Matrix (DBM) specifying each
half space. Instead of considering zones as DBMs, we prefer to work with distance graphs,
the graph representation of a zone. Figure 1 shows the distance graph representation of
the arbitrary zone.

Definition 1 (Distance graph) A distance graph G has clocks as vertices, with an ad-
ditional special vertex x0 representing constant 0. Between every two vertices there is an
edge with a weight of the form (l, c) where c ∈ Z and l ∈ {≤, <} or (l, c) = (<,∞).

An edge x
lc−→ y represents a constraint y − x l c: or in words, the distance from x to y

is bounded by c. We let [[G]] be the set of valuations of clock variables satisfying all the
constraints given by the edges of G with the restriction that the value of x0 is 0.

1

2 Operations on Zones

x

y y
−
x
l xy

c x
y

0− xlx0 cx0

0− y ly0 cy0

x
−
y
l yx

c y
x

x− 0 l0x c0x

y − 0 l0y c0y

0 x y

lx0 cx0

l0x c0x

l0y c0y

ly0 cy0

lxy cxy

lyx cyx

Figure 1: An arbitrary zone and its distance graph

For readability, we will often write 0 instead of x0. A concrete example of a zone and
its distance graph is given in Figure 2.

Arithmetic over weights

An arithmetic over the weights (l, c) can be defined as follows [BY04].

Equality (l1, c1) = (l2, c2) if c1 = c2 and l1 = l2.

Addition (l1, c1) + (l2, c2) = (l, c1 + c2) where l =< iff either l1 or l2 is <.

Minus −(l, c) = (l,−c).

Order (l1, c1) < (l2, c2) if either c1 < c2 or (c1 = c2 and l1 =< and l2 =≤).

This arithmetic lets us talk about the weight of a path as a weight of the sum of its edges.

Representing zones 3

x

y

0

(a)

x < 3

x > 2

y <∞

y > 2

(b)

(c)

0 x y
< −2

< 3

<∞

< −2

<∞

<∞

Figure 2: A concrete zone represented pictorially by the shaded portion in (a); by constraints
defining it in (b); and by its distance graph in (c)

2

4

x

y

0

y
−
x
≤
3

y
−
x
≤
4

y
−
x
≤
5

y
−
x
≤
6

y
−
x
≤
2

Figure 3: The y − x lxy cxy constraint for the zone gets defined by the constraints x ≥ 2 and
y ≤ 4. Adding the constraint y − x ≤ c for any c ≥ 2 still gives the same zone

A cycle in a distance graph G is said to be negative if the sum of the weights of its
edges is at most (<, 0); otherwise the cycle is positive.

Canonical form

Consider the zone showed in Figure 3. It is defined by the constraints:

(x ≥ 2 ∧ y ≤ 4 ∧ x− y ≤ 0)

If one adds y− x ≤ 6 to the above system of constraints, the solution set does not change.
In fact, one could add any constraint y − x ≤ c for c ≥ 2 and the solution set remains the
same. This is because the diagonal constraint gets defined by x ≥ 2 and y ≤ 4. This is

4 Operations on Zones

x

y

0

x
−
y
<

1

0 x y
< −2

< 3

<∞

< −2

<∞

< 1

Figure 4: Tightening the constraints: the thick gray line in the picture on the left shows the tight
diagonal bordering the shaded area, and the arrow marks the half space given by the inequality;
the corresponding constraint obtained by tightening the distance graph is shown in by a dashed
line in the graph.

depicted in Figure 3. Adding the constraint given by the dashed diagonals to the set of
constraints given above does not change the solution set. However, one cannot go below
the diagonal y − x ≤ 2, as doing so would alter the solution set. It is a tight constraint.

Every zone can be represented by a distance graph in canonical form. A distance graph
is in canonical form if the weight of the edge from x to y is the lower bound of the weights
of paths from x to y. For instance, the distance graph given in Figure 2 (c) is not canonical.
Consider the edge from y to x. The weight of the edge is (<,∞). However there is a path

y
<−2−−→ 0

<3−→ x that has weight (<, 1). The tightened edge should therefore be y
<1−→ x.

This corresponds to the diagonal x− y < 1. We depict this in Figure 4.
Given a distance graph, its canonical form can be computed by using an all-pairs

shortest paths algorithm like Floyd-Warshall’s [BY04] in time O(|X|3) where |X| is the
number of clocks. Note that the number of vertices in the distance graph is |X|+ 1.

Distance graphs with empty solution set

We examine when is the solution set [[G]] of a distance graph G empty, in other words,
when is the system of inequalities represented by the distance graph inconsistent. This is
crucial in designing the algorithm for Z ⊆ ClosureM(Z ′).

Consider the distance graph of Figure 4. The solution set represented by this graph
is not empty. Now suppose we change the value of the edge x −→ 0 to (<,−4). This will
correspond to a solution set where x < 3 and x > 4 and hence this solution set will be
empty. Let us now see how this gets reflected in the distance graph. Look at the cycle

0
<3−→ x

<−4−−→ 0. The sum of the weights of edges in the cycle is (<,−1) which is a negative
value. We will now recall the folklore result that a distance graph G has a non-empty
solution set iff all cycles in G are positive.

Proposition 2 A distance graph G has only positive cycles iff [[G]] 6= ∅.

Proof

Representing zones 5

If there is a valuation v ∈ [[G]] then we replace every edge x
lxycxy−→ y by x

≤d−→ y where
d = vy− vx. We have dlxy cxy. Since every cycle in the new graph has value 0, every cycle
in G is positive.

For the other direction suppose that every cycle in G is positive. Let G be the canonical
form of G. Clearly [[G]] = [[G]], i.e., the constraints defined by G and by G are equivalent.
It is also evident that all the cycles in G are positive.

We say that a variable x is fixed in G if in this graph we have edges 0
≤cx−→ x and x

≤−cx−→ 0
for some constant cx. These edges mean that every valuation in [[G]] should assign cx to x.

If all the variables in G are fixed then the value of every cycle in G is 0, and the
valuation assigning cx to x for every variable x is the unique valuation in [[G]]. Hence, [[G]],
and in consequence [[G]] are not empty.

Otherwise there is a variable, say y, that is not fixed in G. We will show how to
fix it. Let us multiply all the constraints in G by 2. This means that we change each

arrow x1
lc−→ x2 to x1

l2c−→ x2. Let us call the resulting graph H. Clearly H is in
canonical form since G is. Moreover [[H]] is not empty iff [[G]] is not empty. The gain of this

transformation is that for our chosen variable y we have in H edges 0
l0yc0y−→ y and y

ly0cy0−→ 0
with cy0+c0y ≥ 2. This means that there is a natural number d such that (≤, d) ≤ (l0y, c0y)

and (≤,−d) ≤ (ly0, cy0). Let Hd be H with edges to and from y changed to 0
≤d−→ y and

y
≤−d−→ 0, respectively. This is a distance graph where y is fixed. We need to show that

there is no negative cycle in this graph.
Suppose that there is a negative cycle in Hd. Clearly it has to pass through 0 and y

since there was no negative cycle in H. Suppose that it uses the edge 0
≤d−→ y, and suppose

that the next used edge is y
lyxcyx−→ x. The cycle cannot come back to y before ending in

0 since then we could construct a smaller negative cycle. Hence all the other edges in the
cycle come from H. Since H is in the canonical form, a path from x to 0 can be replaced
by the edge from x to 0, and the value of the path will not increase. This means that our

hypothetical negative cycle has the form 0
≤d−→ y

lyxcyx−→ x
lx0cx0−→ 0. By canonicity of H we

have (lyx, cyx) + (lx0, cx0) ≥ (ly0, cy0). Putting these two facts together we get

(≤, 0) > (≤, d) + (lyx, cyx) + (lx0, cx0) ≥ (≤, d) + (ly0, cy0)

but this contradicts the choice of d which supposed that (≤, d) + (ly0, cy0) is positive. The

proof when the hypothetical negative cycle passes through the edge y
≤−d−→ 0 is analogous.

Summarizing, starting from G that has no negative cycles we have constructed a graph
Hd that has no negative cycles, and has one more variable fixed. We also know that if
[[Hd]] is not empty then [[G]] is not empty. Repeatedly applying this construction we get a
graph where all the variables are fixed and no cycle is negative. As we have seen above the
semantics of such a graph is not empty. �

Intersection of two distance graphs

For two distance graphs G1, G2 which are not necessarily in canonical form, we denote by
min(G1, G2) the distance graph where each edge has the weight equal to the minimum of

6 Operations on Zones

x

y

0

[[G1]]

[[G2]]

G1
0 x y

< −2

< 3

<∞

< −2

<∞

< 1

G2
0 x y

< −2

< 5

< 3

< 0

< −2

< 5

min(G1, G2)
0 x y

< −2

< 3

< 3

< −2

< −2

< 1

Figure 5: Two zones [[G1]] and [[G2]] are shown in the topmost figure. The corresponding distance
graphs are given below. Note that [[G1]] does not intersect [[G2]]. This is captured by the distance
graph min(G1, G2) which has a negative cycle. Additionally, the min(G1, G2) graph shows exactly
which constraints are responsible for non-intersection.

the corresponding weights in G1 and G2. Even though this graph may be not in canoni-
cal form, it should be clear that it represents intersection of the two arguments, that is,
[[min(G1, G2)]] = [[G1]]∩ [[G2]]; in other words, the valuations satisfying the constraints given
by min(G1, G2) are exactly those satisfying all the constraints from G1 as well as G2.

From Proposition 2, the intersection [[G1]] ∩ [[G2]] is empty iff the distance graph
min(G1, G2) has a negative cycle. Figure 5 shows an example.

We are now ready to give the different steps involved in the successor computation from
a zone.

Guard intersection 7

2 Guard intersection

3 Reset

4 Time elapse

5 Zone inclusion

8 REFERENCES

References

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on Concurrency and Petri Nets, pages 87–124. Springer, 2004.

	Operations on Zones
	Representing zones
	Guard intersection
	Reset
	Time elapse
	Zone inclusion

