Automata for Real-time Systems

B. Srivathsan

Chennai Mathematical Institute

Overview

Automata (*Finite State Machines*) are **good abstractions** of many real systems

hardware circuits, communication protocols, biological processes, . . .

Automata can model many properties of systems

every request is followed by a response

Does system satisfy property?

$$\begin{array}{ccc} \text{System} & & \text{Property} \\ \downarrow & & \downarrow \\ \text{Automaton } \mathcal{A} & & \text{Automaton } \mathcal{B} \end{array}$$

$$\mathcal{L}(\mathcal{A})\subseteq\mathcal{L}(\mathcal{B})?$$

Does system satisfy property?

Model-checking

$$\mathcal{L}(\mathcal{A})\subseteq\mathcal{L}(\mathcal{B})$$
?

Does system satisfy property?

Huge system

Property

Some model-checkers: SMV, NuSMV, SPIN, ...

Some model-checkers: SMV, NuSMV, SPIN, ...

Turing Awards: Clarke, Emerson, Sifakis and Pnueli

Automata are good abstractions of many real systems

Automata are good abstractions of many real systems

Our course: Automata for real-time systems

Picture credits: F. Herbreteau

pacemaker, vehicle control systems, air traffic controllers, ...

Timed Automata

R. Alur and D. Dill in early 90s

Timed Automata

R. Alur and D. Dill in early 90s

Some model-checkers: UPPAAL, KRONOS, RED, ...

Goals of our course

Study language theoretic and algorithmic properties of timed automata

Lecture 1:

Timed languages and timed automata

```
\sum : alphabet \{a, b\}
       \Sigma^*: words \{\varepsilon, a, b, aa, ab, ba, bb, aab, ...\}
L \subseteq \Sigma^*: language \longrightarrow property over words
      L_1 := \{ \text{set of words starting with an "} a " \}
                 \{a, aa, ab, aaa, aab, \ldots\}
      L_2 := \{ \text{set of words with a non-zero even length } \}
                 \{aa, bb, ab, ba, abab, aaaa, \dots\}
```

```
\sum : alphabet \{a, b\}
       \Sigma^*: words \{\varepsilon, a, b, aa, ab, ba, bb, aab, ...\}
L \subset \Sigma^*: language \longrightarrow property over words
      L_1 := \{ \text{set of words starting with an "} a " \}
                 \{a, aa, ab, aaa, aab, \ldots\}
      L_2 := \{ \text{set of words with a non-zero even length } \}
                 {aa, bb, ab, ba, abab, aaaa, . . . }
```

Finite automata, pushdown automata, Turing machines, ...

$$\sum$$
 : alphabet $\{a, b\}$

$T\Sigma^*$: timed words

$$\sum$$
 : alphabet $\{a, b\}$

$T\Sigma^*$: timed words

Word
$$(w, \tau)$$
Time sequence
$$w = a_1 \dots a_n$$

$$a_i \in \Sigma$$

$$\tau = \tau_1 \dots \tau_n$$

$$\tau_i \in \mathbb{R}_{>0}$$

 $\tau_1 < \cdots < \tau_n$

$L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

$$L_1 := \{ (ab(a+b)^*, \tau) \mid \tau_2 - \tau_1 = 1 \}$$

$$L_2 := \{ (w, \tau) \mid \tau_{i+1} - \tau_i \ge 2 \text{ for all } i < |w| \}$$

$L \subseteq T\Sigma^*$: Timed language \longrightarrow property over timed words

$$L_1 := \{ (ab(a+b)^*, \tau) \mid \tau_2 - \tau_1 = 1 \}$$

$$L_2 := \{ (w, \tau) \mid \tau_{i+1} - \tau_i \ge 2 \text{ for all } i < |w| \}$$

Timed automata

 $L_3 := \{ (a^k, \tau) \mid k > 0, \ \tau_i = i \text{ for all } i \leq k \}$ An "a" occurs in every integer from $1, \dots, k$

 $L_3 := \{ (a^k, \tau) \mid k > 0, \ \tau_i = i \text{ for all } i \leq k \}$ An "a" occurs in every integer from $1, \dots, k$

$$L_4 := \{ (a^k, \tau) \mid \text{exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$$

There are 2 "a"s which are at distance 1 apart

$L_4 := \{ (a^k, \tau) \mid \text{ exist } i, j \text{ s.t. } \tau_j - \tau_i = 1 \}$ There are 2 "a"s which are at distance 1 apart

Three mechanisms to exploit:

- ▶ Reset: to **start** measuring time
- ▶ Guard: to impose time constraint on action
- ▶ Non-determinism: for existential time constraints

Run of
$$A$$
 over $(a_1a_2 \dots a_k; \ \tau_1\tau_2 \dots \tau_k)$ $\delta_i := \tau_i - \tau_{i-1}; \ \tau_0 := 0$ $(q_0, v_0) \xrightarrow{\delta_1} (q_0, v_0 + \delta_1) \xrightarrow{a_1} (q_1, v_1) \xrightarrow{\delta_2} (q_1, v_1 + \delta_2) \cdots \xrightarrow{a_k} (q_k, v_k)$ $(w, \tau) \in \mathcal{L}(A)$ if A has an accepting run over (w, τ)

$$L_5 := \{ (abcd.\Sigma^*, \tau) \mid \tau_3 - \tau_1 \leq 2 \text{ and } \tau_4 - \tau_2 \geq 5 \}$$
Interleaving distances

$L_5 := \{ (abcd.\Sigma^*, \tau) \mid \tau_3 - \tau_1 \le 2 \text{ and } \tau_4 - \tau_2 \ge 5 \}$ Interleaving distances

n interleavings \Rightarrow need n clocks

n+1 clocks more expressive than n clocks

Timed automata

Runs

1 clock < 2 clocks < ...

 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

 $L_6 := \{ (a^k, \tau) \mid \tau_i \text{ is some integer for each } i \}$

Claim: No timed automaton can accept L_6

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3:
$$(a; \lceil c_{max} \rceil + 1) \in L_6$$
 and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3:
$$(a; \lceil c_{max} \rceil + 1) \in L_6$$
 and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run
$$(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v_F')$$

Step 1: Suppose
$$L_6 = \mathcal{L}(A)$$

Step 2: For a clock
$$x$$
, $x = \lceil c_{max} \rceil + 1$ and $x = \lceil c_{max} \rceil + 1.1$ satisfy the same guards

Step 3:
$$(a; \lceil c_{max} \rceil + 1) \in L_6$$
 and so A has an accepting run $(q_0, v_0) \xrightarrow{\delta = \lceil c_{max} \rceil + 1} (q_0, v_0 + \delta) \xrightarrow{a} (q_F, v_F)$

Step 4: By Step 2, the following is an accepting run
$$(q_0, v_0) \xrightarrow{\delta' = \lceil c_{max} \rceil + 1.1} (q_0, v_0 + \delta') \xrightarrow{a} (q_F, v_F')$$
Hence $(a; \lceil c_{max} \rceil + 1.1) \in \mathcal{L}(A) \neq L_6$

Therefore **no timed automaton** can accept L_6

Timed automata

Runs

1 clock < 2 clocks < ...

Role of max constant