Unit-9: Computation Tree Logic

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2: CTL*

Recap

- ▶ Path formulae
 - Express properties of paths
 - ▶ LTL

- ► Properties on trees
 - ► A and E operators
 - Mixing A and E

Recap

- ▶ Path formulae
 - Express properties of paths
 - ► LTL

- ► Properties on trees
 - ► A and E operators
 - ► Mixing A and E

Coming next: A logic for expressing properties on trees

$$\phi :=$$

$$\phi := \text{true}$$

$$\phi := \text{true} \mid p_i \mid$$

 $p_i \in AP$

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 |$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae

 $\alpha :=$

$$\alpha := \phi$$

 ϕ : State formula

$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid$$

 ϕ : State formula

 α_1, α_2 : Path formulae

$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid$$

$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid$$

$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid$$

$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid$$

$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

CTL*

State formulae

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

CTL*

State formulae

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

 ϕ : State formula α_1, α_2 : Path formulae

Examples: $E F p_1$, $A F A G p_1$, $A F G p_2$, $A p_1$, $A E p_1$

When does a state in a tree satisfy a state formula?

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Every state satisfies *true*

$$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

- **Every state** satisfies *true*
- ▶ State satisfies p_i if its label contains p_i

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

- ► Every state satisfies *true*
- ► State satisfies p_i if its label contains p_i
- ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

- **Every state** satisfies *true*
- ▶ State satisfies p_i if its label contains p_i
- ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2
- State satisfies $\neg \phi$ if it does not satisfy ϕ

$$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

- ► Every state satisfies *true*
- ► State satisfies p_i if its label contains p_i
- State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2
- State satisfies $\neg \phi$ if it does not satisfy ϕ
- State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

- **Every state** satisfies *true*
- ▶ State satisfies p_i if its label contains p_i
- State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2
- State satisfies $\neg \phi$ if it does not satisfy ϕ
- State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α
- State satisfies A α if all paths starting from the state satisfy α

When does a path in a tree satisfy a path formula?

$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

$$\alpha := \phi \mid \ \alpha_1 \ \land \ \alpha_2 \ \mid \neg \alpha_1 \mid \ X \ \alpha_1 \ \mid \ \alpha_1 \ U \ \alpha_2 \mid F \ \alpha_1 \mid G \ \alpha_1$$

 ϕ : State formula α_1, α_2 : Path formulae

Path satisfies ϕ if the **initial state** of the path satisfies ϕ

$$\alpha := \phi \mid \ \alpha_1 \ \land \ \alpha_2 \ \mid \neg \alpha_1 \mid X \ \alpha_1 \ \mid \ \alpha_1 \ U \ \alpha_2 \mid F \ \alpha_1 \mid G \ \alpha_1$$

- **Path** satisfies ϕ if the **initial state** of the path satisfies ϕ
- Rest standard semantics like LTL

A tree satisfies state formula ϕ if its root satisfies ϕ

E F p_1 : Exists a path where p_1 is true sometime

- ▶ **E F** p_1 : Exists a path where p_1 is true sometime
- \triangleright **A F A G** p_1 :

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$

- ▶ **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ► **A F G** *p*₂: In all paths, there exists a state from which *p*₂ is true forever

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever
- **► A** *p*₁:

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever
- **► A** *p*₁:
 - ightharpoonup All paths satisfy p_1

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright **A F A G** p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ► **A F G** p₂: In all paths, there exists a state from which p₂ is true forever
- **► A** *p*₁:
 - ightharpoonup All paths satisfy p_1
 - All paths start with p_1

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright **A F A G** p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever
- **► A** *p*₁:
 - ightharpoonup All paths satisfy p_1
 - ▶ All paths start with p_1
 - \triangleright Same as p_1 !

EFAG (red)

A F A G (red)

EGEX (red)

EGEX (red)

E (E X blue) U (A G red)

When does a transition system satisfy a CTL* formula?

Transition system satisfies CTL* formula ϕ if its computation tree satisfies ϕ

Can LTL properties be written using CTL*?

Transition System (TS) satisfies LTL formula ϕ if

 $Traces(TS) \subseteq Words(\phi)$

Transition System (TS) satisfies LTL formula ϕ if

$$Traces(TS) \subseteq Words(\phi)$$

All paths in the computation tree of TS satisfy path formula ϕ

Transition System (TS) satisfies LTL formula ϕ if

$$Traces(TS) \subseteq Words(\phi)$$

All paths in the computation tree of TS satisfy path formula ϕ

Equivalent CTL* formula: $\mathbf{A} \phi$

Can CTL* properties be written using LTL?

Can CTL* properties be written using LTL?

Answer: No

EFAG (red)

Cannot be expressed in LTL

Summary

CTL*

Syntax and semantics

State formulae, Path formulae

LTL properties \subseteq CTL* properties