Unit-9: Computation Tree Logic

B. Srivathsan
Chennai Mathematical Institute

NPTEL-course
July - November 2015

Module 2: CTL*

Recap

- Path formulae
- Express properties of paths
- LTL
- Properties on trees
- A and E operators
- Mixing A and E

Recap

- Path formulae
- Express properties of paths
- LTL
- Properties on trees
- A and \mathbf{E} operators
- Mixing A and E

Coming next: A logic for expressing properties on trees

State formulae

$$
\phi:=
$$

State formulae

$$
\phi:=\text { true } \mid
$$

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right|
$$

$$
p_{i} \in A P
$$

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2} \mid
$$

$$
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae }
$$

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2} \mid \neg \phi_{1}
$$

$$
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae }
$$

Path formulae

Path formulae

$$
\alpha:=\phi \mid
$$

ϕ : State formula

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right|
$$

$\phi:$ State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1} \mid
$$

$\phi:$ State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right|
$$

ϕ : State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2} \mid
$$

ϕ : State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}\left|F \alpha_{1}\right|
$$

ϕ : State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}\left|F \alpha_{1}\right| G \alpha_{1}
$$

$\phi:$ State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2} \mid \neg \phi_{1}
$$

$$
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae }
$$

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid
$$

$p_{i} \in A P \quad \phi_{1}, \phi_{2}:$ State formulae $\quad \alpha$: Path formula

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha
$$

$p_{i} \in A P \quad \phi_{1}, \phi_{2}:$ State formulae $\quad \alpha$: Path formula

CTL*

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha
$$

$p_{i} \in A P \quad \phi_{1}, \phi_{2}$: State formulae $\quad \alpha$: Path formula
Path formulae
$\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}\left|F \alpha_{1}\right| G \alpha_{1}$
ϕ : State formula
α_{1}, α_{2} : Path formulae

CTL*

State formulae

$$
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha
$$

$p_{i} \in A P \quad \phi_{1}, \phi_{2}:$ State formulae $\quad \alpha$: Path formula

Path formulae

$\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}\left|F \alpha_{1}\right| G \alpha_{1}$
ϕ : State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae
Examples: $\quad \mathrm{EF} p_{1}, \quad$ AF A G p_{1}, \quad A F G p_{2}, \quad A p_{1}, \quad A E p_{1}

When does a state in a tree satisfy a state formula?

State formulae

$$
\begin{gathered}
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha \\
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae } \quad \alpha: \text { Path formula }
\end{gathered}
$$

State formulae

$$
\begin{gathered}
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha \\
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae } \quad \alpha: \text { Path formula }
\end{gathered}
$$

- Every state satisfies true

State formulae

$$
\begin{gathered}
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha \\
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae } \quad \alpha: \text { Path formula }
\end{gathered}
$$

- Every state satisfies true
- State satisfies p_{i} if its label contains p_{i}

State formulae

$$
\begin{gathered}
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha \\
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae } \quad \alpha: \text { Path formula }
\end{gathered}
$$

- Every state satisfies true
- State satisfies p_{i} if its label contains p_{i}
- State satisfies $\phi_{1} \wedge \phi_{2}$ if it satisfies both ϕ_{1} and ϕ_{2}

State formulae

$$
\begin{gathered}
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha \\
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae } \quad \alpha: \text { Path formula }
\end{gathered}
$$

- Every state satisfies true
- State satisfies p_{i} if its label contains p_{i}
- State satisfies $\phi_{1} \wedge \phi_{2}$ if it satisfies both ϕ_{1} and ϕ_{2}
- State satisfies $\neg \phi$ if it does not satisfy ϕ

State formulae

$$
\begin{gathered}
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha \\
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae } \quad \alpha: \text { Path formula }
\end{gathered}
$$

- Every state satisfies true
- State satisfies p_{i} if its label contains p_{i}
- State satisfies $\phi_{1} \wedge \phi_{2}$ if it satisfies both ϕ_{1} and ϕ_{2}
- State satisfies $\neg \phi$ if it does not satisfy ϕ
- State satisfies $\mathrm{E} \alpha$ if there exists a path starting from the state satisfying α

State formulae

$$
\begin{gathered}
\phi:=\operatorname{true}\left|p_{i}\right| \phi_{1} \wedge \phi_{2}\left|\neg \phi_{1}\right| E \alpha \mid A \alpha \\
p_{i} \in A P \quad \phi_{1}, \phi_{2}: \text { State formulae } \quad \alpha: \text { Path formula }
\end{gathered}
$$

- Every state satisfies true
- State satisfies p_{i} if its label contains p_{i}
- State satisfies $\phi_{1} \wedge \phi_{2}$ if it satisfies both ϕ_{1} and ϕ_{2}
- State satisfies $\neg \phi$ if it does not satisfy ϕ
- State satisfies $\mathrm{E} \alpha$ if there exists a path starting from the state satisfying α
- State satisfies $\mathrm{A} \alpha$ if all paths starting from the state satisfy α

When does a path in a tree satisfy a path formula?

Path formulae

$\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}\left|F \alpha_{1}\right| G \alpha_{1}$
ϕ : State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}\left|F \alpha_{1}\right| G \alpha_{1}
$$

ϕ : State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

- Path satisfies ϕ if the initial state of the path satisfies ϕ

Path formulae

$$
\alpha:=\phi\left|\alpha_{1} \wedge \alpha_{2}\right| \neg \alpha_{1}\left|X \alpha_{1}\right| \alpha_{1} U \alpha_{2}\left|F \alpha_{1}\right| G \alpha_{1}
$$

ϕ : State formula $\quad \alpha_{1}, \alpha_{2}$: Path formulae

- Path satisfies ϕ if the initial state of the path satisfies ϕ
- Rest standard semantics like LTL

A tree satisfies state formula ϕ if its root satisfies ϕ

- E F p_{1} : Exists a path where p_{1} is true sometime
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAG p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- In all paths, there exists a state from which all paths satisfy $G p_{1}$
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- In all paths, there exists a state from which all paths satisfy $G p_{1}$
- In all paths, there exists a state such that every state in the subtree below it contains p_{1}
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- In all paths, there exists a state from which all paths satisfy $G p_{1}$
- In all paths, there exists a state such that every state in the subtree below it contains p_{1}
- A F G p_{2} : In all paths, there exists a state from which p_{2} is true forever
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- In all paths, there exists a state from which all paths satisfy $G p_{1}$
- In all paths, there exists a state such that every state in the subtree below it contains p_{1}
- A F G p_{2} : In all paths, there exists a state from which p_{2} is true forever
- $\mathrm{A} p_{1}$:
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- In all paths, there exists a state from which all paths satisfy $G p_{1}$
- In all paths, there exists a state such that every state in the subtree below it contains p_{1}
- A F G p_{2} : In all paths, there exists a state from which p_{2} is true forever
- $\mathrm{A} p_{1}$:
- All paths satisfy p_{1}
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- In all paths, there exists a state from which all paths satisfy $G p_{1}$
- In all paths, there exists a state such that every state in the subtree below it contains p_{1}
- A F G p_{2} : In all paths, there exists a state from which p_{2} is true forever
- $\mathrm{A} p_{1}$:
- All paths satisfy p_{1}
- All paths start with p_{1}
- E F p_{1} : Exists a path where p_{1} is true sometime
- AFAGp p_{1} :
- In all paths, there exists a state where A G p_{1} is true
- In all paths, there exists a state from which all paths satisfy $G p_{1}$
- In all paths, there exists a state such that every state in the subtree below it contains p_{1}
- A F G p_{2} : In all paths, there exists a state from which p_{2} is true forever
- A_{1} :
- All paths satisfy p_{1}
- All paths start with p_{1}
- Same as p_{1} !

EFAG(red)

A F A G (red)

EGEX(red)

EGEX(red)

E (E X blue) U (A G red)

When does a transition system satisfy a CTL* formula?

Transition system satisfies CTL* formula ϕ if its computation tree satisfies ϕ

Can LTL properties be written using CTL*?

Transition System (TS) satisfies LTL formula ϕ if

$\operatorname{Traces}(\mathrm{TS}) \subseteq \operatorname{Words}(\phi)$

Transition System (TS) satisfies LTL formula ϕ if

$\operatorname{Traces}(\mathrm{TS}) \subseteq \operatorname{Words}(\phi)$

All paths in the computation tree of TS satisfy path formula
ϕ

Transition System (TS) satisfies LTL formula ϕ if

$\operatorname{Traces}(\mathrm{TS}) \subseteq \operatorname{Words}(\phi)$

All paths in the computation tree of TS satisfy path formula ϕ

Equivalent CTL* formula: A ϕ

Can CTL* properties be written using LTL?

Can CTL* properties be written using LTL?

Answer: No

EFAG(red)

Cannot be expressed in LTL

Summary

CTL*
 Syntax and semantics

State formulae, Path formulae
LTL properties \subseteq CTL* properties

