Unit-9: Computation Tree Logic B. Srivathsan Chennai Mathematical Institute NPTEL-course July - November 2015 # Module 2: CTL* # Recap - ▶ Path formulae - Express properties of paths - ▶ LTL - ► Properties on trees - ► A and E operators - Mixing A and E # Recap - ▶ Path formulae - Express properties of paths - ► LTL - ► Properties on trees - ► A and E operators - ► Mixing A and E Coming next: A logic for expressing properties on trees $$\phi :=$$ $$\phi := \text{true}$$ $$\phi := \text{true} \mid p_i \mid$$ $p_i \in AP$ $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 |$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae $\alpha :=$ $$\alpha := \phi$$ ϕ : State formula $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid$$ ϕ : State formula α_1, α_2 : Path formulae $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid$$ $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid$$ $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid$$ $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid$$ $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula # CTL* ## State formulae $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ # CTL* #### State formulae $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula #### Path formulae $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ ϕ : State formula α_1, α_2 : Path formulae **Examples:** $E F p_1$, $A F A G p_1$, $A F G p_2$, $A p_1$, $A E p_1$ # When does a state in a tree satisfy a state formula? $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula **Every state** satisfies *true* $$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula - **Every state** satisfies *true* - ▶ State satisfies p_i if its label contains p_i $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula - ► Every state satisfies *true* - ► State satisfies p_i if its label contains p_i - ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula - **Every state** satisfies *true* - ▶ State satisfies p_i if its label contains p_i - ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 - State satisfies $\neg \phi$ if it does not satisfy ϕ $$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula - ► Every state satisfies *true* - ► State satisfies p_i if its label contains p_i - State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 - State satisfies $\neg \phi$ if it does not satisfy ϕ - State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula - **Every state** satisfies *true* - ▶ State satisfies p_i if its label contains p_i - State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 - State satisfies $\neg \phi$ if it does not satisfy ϕ - State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α - State satisfies A α if all paths starting from the state satisfy α # When does a path in a tree satisfy a path formula? $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ $$\alpha := \phi \mid \ \alpha_1 \ \land \ \alpha_2 \ \mid \neg \alpha_1 \mid \ X \ \alpha_1 \ \mid \ \alpha_1 \ U \ \alpha_2 \mid F \ \alpha_1 \mid G \ \alpha_1$$ ϕ : State formula α_1, α_2 : Path formulae **Path** satisfies ϕ if the **initial state** of the path satisfies ϕ $$\alpha := \phi \mid \ \alpha_1 \ \land \ \alpha_2 \ \mid \neg \alpha_1 \mid X \ \alpha_1 \ \mid \ \alpha_1 \ U \ \alpha_2 \mid F \ \alpha_1 \mid G \ \alpha_1$$ - **Path** satisfies ϕ if the **initial state** of the path satisfies ϕ - Rest standard semantics like LTL # A tree satisfies state formula ϕ if its root satisfies ϕ **E** F p_1 : Exists a path where p_1 is true sometime - ▶ **E F** p_1 : Exists a path where p_1 is true sometime - \triangleright **A F A G** p_1 : - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ▶ **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ► **A F G** *p*₂: In all paths, there exists a state from which *p*₂ is true forever - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever - **► A** *p*₁: - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever - **► A** *p*₁: - ightharpoonup All paths satisfy p_1 - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright **A F A G** p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ► **A F G** p₂: In all paths, there exists a state from which p₂ is true forever - **► A** *p*₁: - ightharpoonup All paths satisfy p_1 - All paths start with p_1 - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright **A F A G** p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever - **► A** *p*₁: - ightharpoonup All paths satisfy p_1 - ▶ All paths start with p_1 - \triangleright Same as p_1 ! #### EFAG (red) #### A F A G (red) #### EGEX (red) #### EGEX (red) #### E (E X blue) U (A G red) #### When does a transition system satisfy a CTL* formula? # **Transition system** satisfies CTL* formula ϕ if its computation tree satisfies ϕ ## Can LTL properties be written using CTL*? #### Transition System (TS) satisfies LTL formula ϕ if $Traces(TS) \subseteq Words(\phi)$ #### Transition System (TS) satisfies LTL formula ϕ if $$Traces(TS) \subseteq Words(\phi)$$ All paths in the computation tree of TS satisfy path formula ϕ #### Transition System (TS) satisfies LTL formula ϕ if $$Traces(TS) \subseteq Words(\phi)$$ All paths in the computation tree of TS satisfy path formula ϕ Equivalent CTL* formula: $\mathbf{A} \phi$ ## Can CTL* properties be written using LTL? ## Can CTL* properties be written using LTL? Answer: No #### EFAG (red) #### Cannot be expressed in LTL ## Summary #### CTL* Syntax and semantics State formulae, Path formulae LTL properties \subseteq CTL* properties