Unit-9: Computation Tree Logic

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 1:

Tree behaviour of a transition system

Transition System

Transition System

Transition System

Traces
$$\{p_1\}\{p_2\}\{p_1,p_3\}\{p_1,p_3\}\{p_1,p_3\}\{p_1,p_3\}\dots$$

 $\{p_1\}\{p_2\}\{p_2\}\{p_1,p_3\}\{p_2\}\{p_1,p_3\}\{p_2\}\{p_1,p_3\}\dots$

In this unit

A tree view of the transition system ...

In this unit

A tree view of the transition system ...

... obtained by repeatedly unfolding it

Computation tree

LTL talks about properties of paths

LTL talks about properties of paths

Coming next: Properties of trees

Exists a path satisfying F(red)

Exists a path satisfying G(red)

Exists a path satisfying X(red)

Exists a path satisfying blue U red

Properties of trees

Type 1: Exists a path satisfying LTL formula ϕ

Properties of trees

Type 1: Exists a path satisfying LTL formula ϕ

E operator: $\mathbf{E} \phi$

Exists a path satisfying F(red): E F(red)

Exists a path satisfying G(red): E G(red)

Exists a path satisfying X(red): EX(red)

Exists a path satisfying blue U red: E (blue U red)

All paths satisfy F(red)

All paths satisfy G(red)

All paths satisfy X(red)

All paths satisfy blue U red

Properties of trees

Type 2: All paths satisfy LTL formula ϕ

Properties of trees

Type 2: All paths satisfy LTL formula ϕ

A operator: $\mathbf{A} \phi$

All paths satisfy F(red): A F(red)

All paths satisfy G(red): A G(red)

All paths satisfy X(red): A X(red)

All paths satisfy blue U red: A blue U red

Properties of trees

Exists a path satisfying path property ϕ : **E** ϕ

• All paths satisfy path property ϕ : A ϕ

Properties of trees

Exists a path satisfying path property ϕ : **E** ϕ

► All paths satisfy path property ϕ : A ϕ

Coming next: Mixing A and E

Exists a path satisfying F(red): E F(red)

All paths satisfy G(red): A G(red)

EFAG (red)

A F A G (red)

Exists a path satisfying G(red): E G(red)

Exists a path satisfying X(red): EX(red)

EGEX (red)

EGEX (red)

E (E X blue) U (A G red)

Summary

Transition system as a tree

Computation tree

E and A operators