Unit-7: Linear Temporal Logic

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 3: A Puzzle

• There is a **boat** that can be driven by the man

- There is a **boat** that can be driven by the man
- Man can take only **one passenger** in the boat with him at a time

- There is a **boat** that can be driven by the man
- Man can take only **one passenger** in the boat with him at a time
- Goat and cabbage cannot be left in the same bank if man is not there

- There is a **boat** that can be driven by the man
- Man can take only **one passenger** in the boat with him at a time
- Goat and cabbage cannot be left in the same bank if man is not there
- Wolf and goat cannot be left in the same bank if man is not there

- There is a **boat** that can be driven by the man
- Man can take only **one passenger** in the boat with him at a time
- Goat and cabbage cannot be left in the same bank if man is not there
- Wolf and goat cannot be left in the same bank if man is not there

How can the man shift everyone to the right bank?

Coming next: Solution using LTL model-checking

man = O		man = 1
goat = O	RIVER	goat = 1
wolf = 0	RIVER	wolf = 1
cabbage = 0		cabbage = 1

$$carry = \{g,w,c,0\}$$

carry = $\{g,w,c,0\}$

man can carry a passenger which has same value as him

carry = $\{g,w,c,0\}$

man can carry a passenger which has same value as him

NuSMV demo

Need a path in this transition system which satisfies:

 ϕ : ((goat = cabbage | wolf = goat) -> man = goat) U (man & cabbage & goat & wolf) Need a path in this transition system which satisfies:

\$\$\phi:((goat = cabbage | wolf = goat) -> man = goat)
U (man & cabbage & goat & wolf)

NuSMV checks property on all paths

Need a path in this transition system which satisfies:

 ϕ : ((goat = cabbage | wolf = goat) -> man = goat) U (man & cabbage & goat & wolf)

NuSMV checks property on all paths

Check $!\phi$ and look at the **counter-example**!

Summary

LTL model-checking

Use in planning problem

Reference

Section 3.3.2

M. Huth and M. Ryan. Logic in Computer Science (Second Edition, Cambridge University Press)