Unit-6: Model-checking ω-regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 4: Generalized Büchi Automata

 $(a^*(b+c)a)^{\omega}$

Accept states: $\{q_1, q_2\}$

 $(a^*(b+c)a)^{\omega}$

Accept states: $\{q_1, q_2\}$

Above NBA also accepts *abababababababab....*

 $(a^*(b+c)a)^{\omega}$

Accept states: $\{q_1, q_2\}$

Above NBA also accepts ababababababab.....

Suppose we want NBA for subset of $(a^*(b+c)a)^{\omega}$ where both *b* and *c* occur infinitely often

Above NBA also accepts ababababababab.....

Suppose we want NBA for subset of $(a^*(b+c)a)^{\omega}$ where both *b* and *c* occur infinitely often

Modified accepting condition: $\{\{q_1\}, \{q_2\}\}$

Generalized NBA

Above NBA also accepts ababababababab.....

Suppose we want NBA for subset of $(a^*(b+c)a)^{\omega}$ where both *b* and *c* occur infinitely often

Modified accepting condition: $\{\{q_1\}, \{q_2\}\}$

Get GNBA for subset of $(a^*(b+c+d)a)^{\omega}$ where:

d occurs infinitely often and either *b* or *c* occur infinitely often

Get GNBA for subset of $(a^*(b+c+d)a)^{\omega}$ where:

d occurs infinitely often and either *b* or *c* occur infinitely often

Accepting condition: $\{ \{q_3\}, \{q_1, q_2\} \}$

Generalized Büchi Automata

States, transitions, initial states as in an NBA

• Accepting condition: $\{F_1, F_2, \dots, F_k\}$

Run is accepting if some state from each of the F_i occurs infinitely often

GNBA

GNBA

GNBA

Generalized Büchi Automata

States, transitions, initial states as in an NBA

- Accepting condition: $\{F_1, F_2, ..., F_k\}$
- Run is accepting if some state from each of the F_i occurs infinitely often

Every GNBA can be converted to an equivalent NBA