# Unit-6: Model-checking $\omega$ -regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

### Module 2:

# $\omega$ -regular expressions to NBA

#### $\Sigma = \{ a, b \}$

```
Example 1: Infinite word consisting only of a
                                      a^{\omega}
                Example 2: Infinite words containing only a or only b \ a^{\omega} + b^{\omega}
         { aaaaaaaaaaaaaaa..., bbbbbbbbbbbbbb...}
                                      аа\Sigma^*аа \cdot b^{\omega}
 Example 3: a word in aa\Sigma^*aa followed by only b-s
 Example 4: Infinite words where b occurs only finitely often (a + b)^* \cdot a^{\omega}
(a^*b)^{\omega}
 Example 5: Infinite words where b occurs infinitely often
```

#### $\omega$ -regular expressions

$$G = E_1 \cdot F_1^{\omega} + E_2 \cdot F_2^{\omega} + \cdots + E_n \cdot F_n^{\omega}$$

$$E_1, \ldots, E_n, F_1, \ldots, F_n$$
 are regular expressions and  $\epsilon \notin L(F_i)$  for all  $1 \le i \le n$ 

$$L(F^{\omega}) = \{ w_1 w_2 w_3 \dots \mid \text{each } w_i \in L(F) \}$$

## More examples

- $(a+b)^{\omega}$  set of all infinite words
- $a(a+b)^{\omega}$  infinite words starting with an a
- $(a + bc + c)^{\omega}$  words where every b is immediately followed by c
- $(a+b)^*c(a+b)^{\omega}$  words with a single occurrence of c
- $((a+b)^*c)^{\omega}$  words where *c* occurs infinitely often

#### $\omega$ -regular expressions

$$G = E_1 \cdot F_1^{\omega} + E_2 \cdot F_2^{\omega} + \cdots + E_n \cdot F_n^{\omega}$$

Goal: Convert  $\omega$ -regular expression to NBA

Part 1: Given regular expression U, find NBA for  $U^{\omega}$ 







# 



# 













# NFA for U Standardized NFA $\begin{array}{c} a \\ \hline q_0 \\ \hline q_1 \end{array}$ Standardized NFA



#### Standardized NFA

























#### NFA for *U*



#### NBA for $U^{\omega}$





Standardized NFA for *U* 





#### Standardized NFA for *U*





NBA for  $U^{\omega}$ 



#### $\omega$ -regular expressions

$$G = E_1 \cdot F_1^{\omega} + E_2 \cdot F_2^{\omega} + \cdots + E_n \cdot F_n^{\omega}$$

Goal: Convert  $\omega$ -regular expression to NBA

#### Part 1: Given regular expression U, find NBA for $U^{\omega}$

Done!



















U





U V





U



U V



#### $U \cdot V$



#### $\omega$ -regular expressions

$$G = E_1 \cdot F_1^{\omega} + E_2 \cdot F_2^{\omega} + \cdots + E_n \cdot F_n^{\omega}$$

Goal: Convert  $\omega$ -regular expression to NBA

#### Part 1: Given regular expression U, find NBA for $U^{\omega}$

**Part 2:** Given regular expression U and NBA for V find NBA for  $U \cdot V$ 

#### Done!

**Part 3:** Given NBA for U and NBA for V find NBA for U + V

#### **Part 3:** Given NBA for U and NBA for V find NBA for U + V

Union of NBA already seen in Unit 5

#### Part 1: Given regular expression U, find NBA for $U^{\omega}$

**Part 2:** Given regular expression U and NBA for V find NBA for  $U \cdot V$ 

**Part 3:** Given NBA for U and NBA for V find NBA for U + V

#### Theorem

Every  $\omega$ -regular expression can be converted to an NBA