Unit-5: ω -regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 4: Simple properties of NBA

Product construction

Emptiness

Complementation

Deterministic Büchi Automata

Words where b occurs infinitely often

- Single initial state
- From every state on an alphabet, there is a unique transition

Question: Can every NBA be converted to an equivalent DBA?

 $(a+b)^*b^\omega$: *a* occurs only finitely often

 $(a+b)^*b^{\omega}$: *a* occurs only finitely often

- Automaton has to guess the point from where only b occurs
- A deterministic Büchi automaton cannot make this guess

 $(a+b)^*b^\omega$: *a* occurs only finitely often

- Automaton has to guess the point from where only b occurs
- A deterministic Büchi automaton cannot make this guess

The above language cannot be accepted by a DBA

 $(a+b)^*b^\omega$: *a* occurs only finitely often

- Automaton has to guess the point from where only b occurs
- A deterministic Büchi automaton cannot make this guess

The above language cannot be accepted by a DBA

Theorem 4.50 (Page 190) of Principles of Model Checking, Baier and Katoen. MIT Press (2008)

DBA less powerful than NBA

Product construction

Emptiness

Complementation

Word $(ab)^{\omega}$ is accepted by both automata

Word $(ab)^{\omega}$ is accepted by both automata

Coming next: The synchronous product construction

 $\langle p_1, q_1 \rangle$ is not present

 $\langle p_1, q_1 \rangle$ is not present

No accepting state!

 $\langle p_1, q_1 \rangle$ is not present

No accepting state!

But intersection of the two automata is not empty

- ▶ Need to **modify** the product construction
- Track accepting states of both automata
- Ensure that both automata visit accepting states infinitely often

а

Word is accepted by product \longleftrightarrow it is accepted by both component automata

DBA less powerful than NBA

Product construction

Language intersection

Emptiness

Complementation

DBA less powerful than NBA

Product construction

Language intersection

Emptiness

Complementation

Next unit ...

Language: *b* occurs infinitely often

Language: *b* occurs infinitely often

Language: *a* occurs infinitely often

Language: b occurs infinitely often

Language: a occurs infinitely often

Not the complement!

 $(ab)^{\omega}$ present in both

Challenges

Mere interchange of accepting states does not work

► Moreoever, NBA are more expressive than DBA

Complementation

Theorem

Given an NBA \mathscr{A} , there is an algorithm to compute the NBA accepting the complement language $\mathscr{L}(\mathscr{A})^c$

Proof out of scope of this course

For union, take the disjoint union of the two NBA

DBA less powerful than NBA

Product construction

Language intersection

Emptiness

Complementation

Next unit ...