Unit-5: ω-regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2:
 ω-regular expressions

Languages over finite words

Σ : finite alphabet $\quad \Sigma^{*}=$ set of all words over Σ

Language: A set of finite words

$$
\{a b, a b a b, a b a b a b, \ldots\}
$$

finite words starting with an a finite words starting with a b

$$
\begin{gathered}
\{\epsilon, b, b b, b b b, \ldots\} \\
\{\epsilon, a b, a b a b, a b a b a b, \ldots\} \\
\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}
\end{gathered}
$$

words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

Regular expressions

Σ : finite alphabet $\quad \Sigma^{*}=$ set of all words over Σ
Language: A set of finite words

$$
a b(a b)^{*} \quad\{a b, a b a b, a b a b a b, \ldots\}
$$

$a \Sigma^{*} \quad$ finite words starting with an a
$b \Sigma^{*} \quad$ finite words starting with a b

$$
\begin{gathered}
b^{*} \quad\{\epsilon, b, b b, b b b, \ldots\} \\
(a b)^{*}\{\epsilon, a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

$(b b b)^{*} \quad\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}$
$a \sum^{*} a \quad$ words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

Alphabet $\quad \Sigma=\{a, b\}$

$$
\begin{aligned}
\Sigma \cdot \Sigma & =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

$$
\Sigma^{0}=\{\epsilon\}(\text { empty word, with length } 0)
$$

$$
\begin{aligned}
a b a \cdot \epsilon & =a b a \\
\epsilon \cdot b b b & =b b b \\
w \cdot \epsilon & =w \\
\epsilon \cdot w & =w
\end{aligned}
$$

$$
\Sigma^{1}=\text { words of length } 1
$$

$$
\Sigma^{2}=\text { words of length } 2
$$

$$
\Sigma^{3}=\text { words of length } 3
$$

$$
\Sigma^{k}=\text { words of length } k
$$

$$
\Sigma^{*}=\bigcup_{i \geq 0} \Sigma^{i}
$$

$$
=\text { set of all finite length words }
$$

Regular expressions

Regular expressions

ϵ

Regular expressions

$\epsilon|a| b$

Regular expressions

$$
\epsilon|a| b \mid r_{1} r_{2}
$$

Regular expressions

$$
\epsilon|a| b\left|r_{1} r_{2}\right| r_{1}+r_{2}
$$

Regular expressions

$$
\epsilon|a| b\left|r_{1} r_{2}\right| r_{1}+r_{2} \mid r^{*}
$$

Regular expressions

$$
\epsilon|a| b\left|r_{1} r_{2}\right| r_{1}+r_{2} \mid r^{*}
$$

where r_{1}, r_{2}, r are regular expressions themselves

Regular expressions

$$
\epsilon|a| b\left|r_{1} r_{2}\right| r_{1}+r_{2} \mid r^{*}
$$

where r_{1}, r_{2}, r are regular expressions themselves

$$
\begin{aligned}
& a^{*}+b^{*} \\
& a b+b b+b a a \\
& (a+b)^{*} a b(b a+b b) \\
& (a b+b b)^{*} \\
& \quad \vdots
\end{aligned}
$$

Theorem

1. Every regular expression can be converted to an NFA accepting the language of the expression
2. Every NFA can be converted to a regular expression describing the language of the NFA

Coming next: Languages over infinite words

$$
\Sigma=\{a, b\}
$$

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of a
\{ adadadadadadadad... \}

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of a

$$
\{\text { adaaaaaaaaaaaaaa... }\}
$$

Example 2: Infinite words containing only a or only b

$$
\{\text { aaaaadaaaaaaaaa ..., bbbbbbbbbbbb... \} }
$$

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of a

$$
\{\text { adaaaaaaadaaaaaa... }\}
$$

Example 2: Infinite words containing only a or only b

$$
\{\text { aaaadaaaaadaaaa ..., bbbbbbbbbbbb... \} }
$$

Example 3: a word in $a a \Sigma^{*}$ aa followed by only b-s
$\{a a a a b b b b b b b \ldots$, a ababaabbbbbb..., aabbbbaabbbbbbb..., ... \}

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of a

$$
\{\text { aaadaaaadaaaadaa ... \} }
$$

Example 2: Infinite words containing only a or only b

$$
\{\text { aaaaaaaaaaaaaaa } \ldots, \text { bbbbbbbbbbbb... \}}
$$

Example 3: a word in $a a \sum^{*}$ a followed by only b-s
$\{$ aaaabbbbbbb..., aababaabbbbbb..., aabbbbaabbbbbbb..., ... \}
Example 4: Infinite words where b occurs only finitely often
\{ adaadadaadadaada ..., badadadaada ..., babbaaaadaaaadaa..., ... \}

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of a

```
{ adadadadadadadaa... }
```

Example 2: Infinite words containing only a or only b \{ aadaadaaaaaaaad..., bbbbbbbbbbbb... \}

Example 3: a word in $a a \sum^{*}$ aa followed by only b-s
$\{$ aaaabbbbbbb..., aababaabbbbbb..., aabbbbaabbbbbbb..., ... \}
Example 4: Infinite words where b occurs only finitely often
\{ adaadadaadadaada ..., badadadaada ..., babbaaaadaaaadaa..., ... \}
Example 5: Infinite words where b occurs infinitely often
$\{a b a b a b a b a b a b \ldots, b b b a b b b a b b b a b b b a \ldots, b b b b b b b b b b b b b \ldots, \ldots\}$

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of $a \quad a^{\omega}$
\{ adadadadadadadaaa...\}

Example 2: Infinite words containing only a or only b

$$
\{\text { aaaadaaaaaaaaaa } \ldots, \text { bbbbbbbbbbbb... }\}
$$

Example 3: a word in $a a \sum^{*}$ a followed by only b-s
$\{$ aaaabbbbbbb..., aababaabbbbbb..., aabbbbaabbbbbbb..., ... \}
Example 4: Infinite words where b occurs only finitely often
\{ adadadadadadadaa..., badadadadad..., babbaadadadadada..., ... \}
Example 5: Infinite words where b occurs infinitely often
$\{a b a b a b a b a b a b \ldots, b b b a b b b a b b b a b b b a \ldots, b b b b b b b b b b b b b \ldots, \ldots\}$

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of $a \quad a^{\omega}$ \{ adadadadadadadaaa...\}

Example 2: Infinite words containing only a or only $b a^{\omega}+b^{\omega}$

$$
\{\text { aaaaaaaaaaaaaaa..., bbbbbbbbbbbb... }\}
$$

Example 3: a word in $a a \Sigma^{*}$ aa followed by only b-s
$\{$ aaaabbbbbbb..., aababaabbbbbb..., aabbbbaabbbbbbb..., ... \}
Example 4: Infinite words where b occurs only finitely often
$\{$ adadadadadadadad..., badadadadad..., babbadadadadadad..., ... \}
Example 5: Infinite words where b occurs infinitely often
$\{a b a b a b a b a b a b \ldots, b b b a b b b a b b b a b b b a \ldots, b b b b b b b b b b b b b \ldots, \ldots\}$

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of $a \quad a^{\omega}$
\{ adadadadadadadaaa...\}
Example 2: Infinite words containing only a or only $b a^{\omega}+b^{\omega}$ $\{$ adaadaadaaaaada..., bbbbbbbbbbbbb...\}

Example 3: a word in $a a \Sigma^{*}$ aa followed by only b-s $a a \Sigma^{*} a a \cdot b^{\omega}$
$\{$ aaaabbbbbbb..., aababaabbbbbb..., aabbbbaabbbbbbb..., ... \}
Example 4: Infinite words where b occurs only finitely often
$\{$ adadadadadadadad..., badadadadad..., babbadadadadadad..., ... \}
Example 5: Infinite words where b occurs infinitely often
$\{a b a b a b a b a b a b \ldots, b b b a b b b a b b b a b b b a \ldots, b b b b b b b b b b b b b \ldots, \ldots\}$

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of $a \quad a^{\omega}$

Example 2: Infinite words containing only a or only $b a^{\omega}+b^{\omega}$ $\{$ adaadaadaaaaada..., bbbbbbbbbbbbb...\}

Example 3: a word in $a a \Sigma^{*}$ aa followed by only b-s $a a \Sigma^{*} a a \cdot b^{\omega}$
$\{$ aaaabbbbbbb..., aababaabbbbbb..., aabbbbaabbbbbbb..., ... \}
Example 4: Infinite words where b occurs only finitely often $(a+b)^{*} \cdot b^{\omega}$ $\{$ adadadaddaddadad..., baddadadada..., babbadadadadadad..., ... \}

Example 5: Infinite words where b occurs infinitely often
$\{a b a b a b a b a b a b \ldots, b b b a b b b a b b b a b b b a \ldots, b b b b b b b b b b b b b \ldots, \ldots\}$

$$
\Sigma=\{a, b\}
$$

Example 1: Infinite word consisting only of $a \quad a^{\omega}$

Example 2: Infinite words containing only a or only $b a^{\omega}+b^{\omega}$ $\{$ adaadaadaaaaada..., bbbbbbbbbbbbb...\}

Example 3: a word in $a a \Sigma^{*}$ aa followed by only b-s $a a \Sigma^{*} a a \cdot b^{\omega}$
$\{$ aaaabbbbbbb..., aababaabbbbbb..., aabbbbaabbbbbbb..., ... \}
Example 4: Infinite words where b occurs only finitely often $(a+b)^{*} \cdot b^{\omega}$
\{adadadadadadadaa..., badadadadaa..., babbadadadadadaa..., ... \}
Example 5: Infinite words where b occurs infinitely often $\quad\left(a^{*} b\right)^{\omega}$
$\{a b a b a b a b a b a b \ldots, b b b a b b b a b b b a b b b a \ldots, b b b b b b b b b b b b b \ldots, \ldots\}$
ω-regular expressions

$$
G=E_{1} \cdot F_{1}^{\omega}+E_{2} \cdot F_{2}^{\omega}+\cdots+E_{n} \cdot F_{n}^{\omega}
$$

$E_{1}, \ldots, E_{n}, F_{1}, \ldots, F_{n}$ are regular expressions and $\epsilon \notin L\left(F_{i}\right)$ for all $1 \leq i \leq n$
ω-regular expressions

$$
G=E_{1} \cdot F_{1}^{\omega}+E_{2} \cdot F_{2}^{\omega}+\cdots+E_{n} \cdot F_{n}^{\omega}
$$

$E_{1}, \ldots, E_{n}, F_{1}, \ldots, F_{n}$ are regular expressions and $\epsilon \notin L\left(F_{i}\right)$ for all $1 \leq i \leq n$

$$
L\left(F^{\omega}\right)=\left\{w_{1} w_{2} w_{3} \ldots \mid \text { each } w_{i} \in L(F)\right\}
$$

More examples

More examples

- $(a+b)^{\omega}$ set of all infinite words

More examples

- $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a

More examples

- $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a
- $(a+b c+c)^{\omega}$ words where every b is immediately followed by c

More examples

- $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a
- $(a+b c+c)^{\omega}$ words where every b is immediately followed by c
- $(a+b)^{*} c(a+b)^{\omega}$ words with a single occurrence of c

More examples

- $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a
- $(a+b c+c)^{\omega}$ words where every b is immediately followed by c
- $(a+b)^{*} c(a+b)^{\omega}$ words with a single occurrence of c
- $\left((a+b)^{*} c\right)^{\omega}$ words where c occurs infinitely often

$$
\begin{aligned}
\mathbf{A P}= & \left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \\
\Sigma=\operatorname{PowerSet}(\mathbf{A P})= & \left\{\left\},\left\{p_{1}\right\}, \ldots,\left\{p_{k}\right\},\right.\right. \\
& \left\{p_{1}, p_{2}\right\},\left\{p_{1}, p_{3}\right\}, \ldots,\left\{p_{k-1}, p_{k}\right\}, \\
& \left.\left\{p_{1}, \ldots, \ldots, p_{k}\right\}\right\}
\end{aligned}
$$

A property is a language of infinite words over alphabet Σ

$$
\begin{aligned}
\mathbf{A P}= & \left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \\
\Sigma=\operatorname{PowerSet}(\mathbf{A P})= & \left\{\left\},\left\{p_{1}\right\}, \ldots,\left\{p_{k}\right\}\right.\right. \\
& \left\{p_{1}, p_{2}\right\},\left\{p_{1}, p_{3}\right\}, \ldots,\left\{p_{k-1}, p_{k}\right\} \\
& \left.\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}\right\}
\end{aligned}
$$

A property is a language of infinite words over alphabet Σ

The property is ω-regular if it can be described by an ω-regular expression

$$
\begin{aligned}
\text { AP } & =\{\text { wait, crit }\} \\
\Sigma=\operatorname{PowerSet}(\mathbf{A P}) & =\{\{ \},\{\text { wait }\},\{\text { crit }\},\{\text { wait }, \text { crit }\}\}
\end{aligned}
$$

$$
\begin{aligned}
\text { AP } & =\{\text { wait, crit }\} \\
\Sigma=\operatorname{PowerSet}(\mathbf{A P}) & =\{\{ \},\{\text { wait }\},\{\text { crit }\},\{\text { wait }, \text { crit }\}\}
\end{aligned}
$$

Property: Process enters critical section infinitely often

$$
\begin{aligned}
\text { AP } & =\{\text { wait, crit }\} \\
\Sigma=\operatorname{PowerSet}(\mathbf{A P}) & =\{\{ \},\{\text { wait }\},\{\text { crit }\},\{\text { wait }, \text { crit }\}\}
\end{aligned}
$$

Property: Process enters critical section infinitely often

$$
\left(\left(\}+\{\text { wait }\})^{*}(\{\text { crit }\}+\{\text { wait, crit }\})\right)^{\omega}\right.
$$

ω-regular properties

$$
\omega \text {-regular expressions }
$$

Next goal: Find algorithms to model-check ω-regular properties

