Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2:
 A gentle introduction to automata

$\mathrm{AP}=$ set of atomic propositions

AP-INF $=$ set of infinite words over PowerSet(AP)
A property over AP is a subset of AP-INF

Goal: Need finite descriptions of properties

Goal: Need finite descriptions of properties

Here: Finite state automata to describe sets of words

Goal: Need finite descriptions of properties

Here: Finite state automata to describe sets of finite words

Alphabet: $\{a, b\}$

Alphabet: $\{a, b\}$
$L_{1}=\{a b, a b a b, a b a b a b, \ldots\}$

Alphabet: $\{a, b\}$

$$
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{1}

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{1}

q3
(q4)

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{1}

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{1}

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{1}

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{1}

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
\end{gathered}
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{1}

Alphabet: $\{a, b\}$

$$
L_{2}=\{a, a a, a b, a a a, a a b, a b a, a b b, \ldots\}
$$

L_{2} is the set of all words starting with a

Alphabet: $\{a, b\}$

$$
L_{2}=\{a, a a, a b, a a a, a a b, a b a, a b b, \ldots\}
$$

L_{2} is the set of all words starting with a
Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{2}

Alphabet: $\{a, b\}$

$$
L_{2}=\{a, a a, a b, a a a, a a b, a b a, a b b, \ldots\}
$$

$$
L_{2} \text { is the set of all words starting with } a
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{2}

Alphabet: $\{a, b\}$

$$
L_{2}=\{a, a a, a b, a a a, a a b, a b a, a b b, \ldots\}
$$

$$
L_{2} \text { is the set of all words starting with } a
$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that the set of all paths from an initial state to an accepting state equals L_{2}

Finite Automaton

Coming next: Some terminology

Alphabet $\quad \Sigma=\{a, b\}$

Alphabet $\quad \Sigma=\{a, b\}$

$$
\Sigma \cdot \Sigma=\{a, b\} \cdot\{a, b\}
$$

Alphabet $\quad \Sigma=\{a, b\}$

$$
\begin{aligned}
\Sigma \cdot \Sigma & =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

Alphabet $\quad \Sigma=\{a, b\}$

$$
\begin{aligned}
\Sigma \cdot \Sigma & =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

$\Sigma^{1}=$ words of length 1
$\Sigma^{2}=$ words of length 2

Alphabet $\quad \Sigma=\{a, b\}$

$$
\begin{aligned}
\Sigma \cdot \Sigma & =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

$\Sigma^{1}=$ words of length 1
$\Sigma^{2}=$ words of length 2
$\Sigma^{3}=$ words of length 3

Alphabet $\quad \Sigma=\{a, b\}$

$$
\begin{aligned}
\Sigma \cdot \Sigma & =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

$\Sigma^{1}=$ words of length 1
 $\Sigma^{2}=$ words of length 2
 $\Sigma^{3}=$ words of length 3

$\Sigma^{k}=$ words of length k

Alphabet $\quad \Sigma=\{a, b\}$

$$
\begin{aligned}
\Sigma \cdot \Sigma & =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

$\Sigma^{0}=\{\epsilon\}$ (empty word, with length 0)

$$
\begin{aligned}
a b a \cdot \epsilon & =a b a \\
\epsilon \cdot b b b & =b b b \\
w \cdot \epsilon & =w \\
\epsilon \cdot w & =w
\end{aligned}
$$

$$
\Sigma^{1}=\text { words of length } 1
$$

$\Sigma^{2}=$ words of length 2
$\Sigma^{3}=$ words of length 3
$\Sigma^{k}=$ words of length k

Alphabet $\quad \Sigma=\{a, b\}$

$$
\begin{aligned}
\Sigma \cdot \Sigma & =\{a, b\} \cdot\{a, b\} \\
& =\{a a, a b, b a, b b\}
\end{aligned}
$$

$$
\Sigma^{0}=\{\epsilon\}(\text { empty word, with length } 0)
$$

$$
\begin{aligned}
a b a \cdot \epsilon & =a b a \\
\epsilon \cdot b b b & =b b b \\
w \cdot \epsilon & =w \\
\epsilon \cdot w & =w
\end{aligned}
$$

$$
\Sigma^{1}=\text { words of length } 1
$$

$$
\Sigma^{2}=\text { words of length } 2
$$

$$
\Sigma^{3}=\text { words of length } 3
$$

$$
\Sigma^{k}=\text { words of length } k
$$

$$
\Sigma^{*}=\bigcup_{i \geq 0} \Sigma^{i}
$$

$$
=\text { set of all finite length words }
$$

$\Sigma^{*}=$ set of all words over Σ

$$
\Sigma^{*}=\text { set of all words over } \Sigma
$$

Any set of words is called a language
$\Sigma^{*}=$ set of all words over Σ

Any set of words is called a language
$\{a b, a b a b, a b a b a b, \ldots\}$
words starting with an a
words starting with a b

$$
\begin{gathered}
\{\epsilon, b, b b, b b b, \ldots\} \\
\{\epsilon, a b, a b a b, a b a b a b, \ldots\} \\
\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}
\end{gathered}
$$

words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

$\Sigma^{*}=$ set of all words over Σ

Any set of words is called a language
$\{a b, a b a b, a b a b a b, \ldots\}$
$a \Sigma^{*} \quad$ words starting with an a
words starting with a b

$$
\begin{gathered}
\{\epsilon, b, b b, b b b, \ldots\} \\
\{\epsilon, a b, a b a b, a b a b a b, \ldots\} \\
\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}
\end{gathered}
$$

words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

$\Sigma^{*}=$ set of all words over Σ

Any set of words is called a language
$\{a b, a b a b, a b a b a b, \ldots\}$
$a \Sigma^{*} \quad$ words starting with an a
$b \Sigma^{*} \quad$ words starting with a b

$$
\begin{gathered}
\{\epsilon, b, b b, b b b, \ldots\} \\
\{\epsilon, a b, a b a b, a b a b a b, \ldots\} \\
\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}
\end{gathered}
$$

words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

$\Sigma^{*}=$ set of all words over Σ

Any set of words is called a language
$\{a b, a b a b, a b a b a b, \ldots\}$
$a \Sigma^{*} \quad$ words starting with an a
$b \Sigma^{*} \quad$ words starting with a b

$$
\begin{gathered}
b^{*} \quad\{\epsilon, b, b b, b b b, \ldots\} \\
\{\epsilon, a b, a b a b, a b a b a b, \ldots\} \\
\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}
\end{gathered}
$$

words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

$\Sigma^{*}=$ set of all words over Σ

Any set of words is called a language
$\{a b, a b a b, a b a b a b, \ldots\}$
$a \Sigma^{*} \quad$ words starting with an a
$b \Sigma^{*} \quad$ words starting with a b

$$
b^{*} \quad\{\epsilon, b, b b, b b b, \ldots\}
$$

$(a b)^{*}\{\epsilon, a b, a b a b, a b a b a b, \ldots\}$

$$
\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}
$$

words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

$\Sigma^{*}=$ set of all words over Σ

Any set of words is called a language
$\{a b, a b a b, a b a b a b, \ldots\}$
$a \Sigma^{*} \quad$ words starting with an a
$b \Sigma^{*} \quad$ words starting with a b

$$
b^{*} \quad\{\epsilon, b, b b, b b b, \ldots\}
$$

$(a b)^{*}\{\epsilon, a b, a b a b, a b a b a b, \ldots\}$
$(b b b)^{*} \quad\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}$
words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

$\Sigma^{*}=$ set of all words over Σ

Any set of words is called a language
$\{a b, a b a b, a b a b a b, \ldots\}$
$a \Sigma^{*} \quad$ words starting with an a
$b \Sigma^{*} \quad$ words starting with a b

$$
\begin{gathered}
b^{*} \quad\{\epsilon, b, b b, b b b, \ldots\} \\
(a b)^{*}\{\epsilon, a b, a b a b, a b a b a b, \ldots\} \\
(b b b)^{*} \quad\left\{\epsilon, b b b, b b b b b b,(b b b)^{3}, \ldots\right\}
\end{gathered}
$$

$a \sum^{*} a \quad$ words starting and ending with an a

$$
\left\{\epsilon, a b, a a b b, a a a b b b, a^{4} b^{4} \ldots\right\}
$$

In this module...

Task: Design Finite Automata for some languages

Words
 Languages
 Finite Automata

Alphabet: $\{a, b\}$

$$
L_{1}=\{a b, a b a b, a b a b a b, \ldots\}
$$

Design a Finite automaton for L_{1}

Alphabet: $\{a, b\}$

$$
L_{3}=\{\epsilon, a b, a b a b, a b a b a b, \ldots\}
$$

Design a Finite automaton for L_{3}

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
\Sigma^{*}=\{\epsilon, a, b, a a, a b, b a, b b \ldots\}
\end{gathered}
$$

Design a Finite automaton for Σ^{*}

Alphabet: $\{a, b\}$

$$
a^{*}=\left\{\epsilon, a, a a, a a a, \text { aaaa }, a^{5}, \ldots\right\}
$$

a^{*} is the set of all words having only a
Design a Finite automaton for a^{*}

Alphabet: $\{a, b\}$

$$
a^{*}=\left\{\epsilon, a, a a, a a a, \text { aaaa }, a^{5}, \ldots\right\}
$$

a^{*} is the set of all words having only a
Design a Finite automaton for a^{*}

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
a^{*}=\left\{\epsilon, a, a a, \text { aaa, aaaa, } a^{5}, \ldots\right\} \\
a^{*} \text { is the set of all words having only } a \\
\text { Design a Finite automaton for } a^{*}
\end{gathered}
$$

Non-deterministic automaton

Transition Systems

Deterministic

Single initial state
and

Non-deterministic

Multiple initial states
or

Transition Systems

Same applies in the case of Finite Automata

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\}
\end{gathered}
$$

Design a Finite automaton for $a b^{*}$

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\}
\end{gathered}
$$

Design a Finite automaton for $a b^{*}$

$$
\begin{gathered}
\text { Alphabet: }\{a, b\} \\
a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\}
\end{gathered}
$$

Design a Finite automaton for $a b^{*}$

Non-deterministic automaton

Alphabet: $\{a, b\}$

$$
\begin{aligned}
& a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\} \\
& b a^{*}=\left\{b, b a, b a^{2}, b a^{3}, b a^{4}, \ldots\right\}
\end{aligned}
$$

Design a Finite automaton for $a b^{*} \cup b a^{*}$

Alphabet: $\{a, b\}$

$$
\begin{aligned}
& a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\} \\
& b a^{*}=\left\{b, b a, b a^{2}, b a^{3}, b a^{4}, \ldots\right\}
\end{aligned}
$$

Design a Finite automaton for $a b^{*} \cup b a^{*}$

Alphabet: $\{a, b\}$

$$
\begin{aligned}
& a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\} \\
& b a^{*}=\left\{b, b a, b a^{2}, b a^{3}, b a^{4}, \ldots\right\}
\end{aligned}
$$

Design a Finite automaton for $a b^{*} \cup b a^{*}$

Non-deterministic automaton

Alphabet: $\{a, b\}$

$$
\begin{aligned}
& a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\} \\
& b a^{*}=\left\{b, b a, b a^{2}, b a^{3}, b a^{4}, \ldots\right\}
\end{aligned}
$$

Design a Finite automaton for $a b^{*} \cup b a^{*}$

Alphabet: $\{a, b\}$

$$
\begin{aligned}
& a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\} \\
& b a^{*}=\left\{b, b a, b a^{2}, b a^{3}, b a^{4}, \ldots\right\}
\end{aligned}
$$

Design a Finite automaton for $a b^{*} \cup b a^{*}$

Alphabet: $\{a, b\}$

$$
\begin{aligned}
& a b^{*}=\left\{a, a b, a b^{2}, a b^{3}, a b^{4}, \ldots\right\} \\
& b a^{*}=\left\{b, b a, b a^{2}, b a^{3}, b a^{4}, \ldots\right\}
\end{aligned}
$$

Design a Finite automaton for $a b^{*} \cup b a^{*}$

Multiple initial states: non-deterministic automaton

What is the language of the following automaton?

What is the language of the following automaton?

[^0]What is the language of the following automaton?

What is the language of the following automaton?

Answer: $\Sigma^{*} a b \Sigma^{*}$
words containing $a b$

What is the language of the following automaton?

What is the language of the following automaton?

Answer: $\Sigma^{*} a \Sigma^{*} b \Sigma^{*}$
words where there exists an \mathbf{a} followed by abafter sometime

What is the language of the following automaton?

What is the language of the following automaton?

$$
\text { Answer: } \Sigma^{*} a b^{*} c \Sigma^{*} \quad(\Sigma=\{a, b, c\})
$$

words where there exists an a followed by only b's and after sometime a coccurs

Alphabet: $\{a, b\}$

$$
L=\left\{\epsilon, a b, a a b b, a a a b b b, \ldots, a^{i} b^{i}, \ldots\right\}
$$

Can we design a Finite automaton for L ?

Alphabet: $\{a, b\}$

$$
L=\left\{\epsilon, a b, a a b b, a a a b b b, \ldots, a^{i} b^{i}, \ldots\right\}
$$

Can we design a Finite automaton for L ?

Need infinitely many states to remember the number of a 's

Alphabet: $\{a, b\}$

$$
L=\left\{\epsilon, a b, a a b b, a a a b b b, \ldots, a^{i} b^{i}, \ldots\right\}
$$

Can we design a Finite automaton for L ?

Need infinitely many states to remember the number of a 's

Cannot construct finite automaton for this language

Regular languages

Definition

A language is called regular if it can be accepted by a finite automaton

Finite Automata

Non-deterministic (NFA)
Regular languages

Finite Automata

Deterministic (DFA)
Non-deterministic (NFA)
Regular languages

Next module: Are DFA and NFA equivalent?

[^0]: Answer: $a \sum^{*} a$
 words starting and ending with a

