Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2: A gentle introduction to automata

AP = set of atomic propositions

AP-INF = set of infinite words over *PowerSet*(AP)

A property over AP is a subset of AP-INF

Goal: Need finite descriptions of properties

Goal: Need finite descriptions of properties

Here: Finite state automata to describe sets of words

Goal: Need finite descriptions of properties

Here: Finite state automata to describe sets of finite words

$$L_1 = \{ab, abab, ababab, \ldots\}$$

 $L_1 = \{ab, abab, ababab, \ldots\}$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that

$$L_1 = \{ab, abab, ababab, \ldots\}$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that

$$L_1 = \{ab, abab, ababab, \ldots\}$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that

$$L_1 = \{ab, abab, ababab, \ldots\}$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that

$$L_1 = \{ab, abab, ababab, \ldots\}$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that

$$L_1 = \{ab, abab, ababab, \ldots\}$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that

$$L_1 = \{ab, abab, ababab, \ldots\}$$

Design a TS with actions $\{a, b\}$ and mark some states as accepting so that

$$L_2 = \{a, aa, ab, aaa, aab, aba, abb, \ldots\}$$

 L_2 is the set of all words starting with *a*

$$L_2 = \{ a, aa, ab, aaa, aab, aba, abb, ... \}$$

 L_2 is the set of all words starting with *a*

Design a TS with actions $\{a, b\}$ and mark some states as **accepting** so that the set of **all paths** from an initial state to an accepting state equals L_2

$$L_2 = \{a, aa, ab, aaa, aab, aba, abb, ...\}$$

 L_2 is the set of all words starting with a

Design a TS with actions $\{a, b\}$ and mark some states as **accepting** so that the set of **all paths** from an initial state to an accepting state equals L_2

$$L_2 = \{a, aa, ab, aaa, aab, aba, abb, ...\}$$

 L_2 is the set of all words starting with *a*

Design a TS with actions $\{a, b\}$ and mark some states as **accepting** so that the set of **all paths** from an initial state to an accepting state equals L_2

Coming next: Some terminology

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$
$$= \{aa, ab, ba, bb\}$$

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$
$$= \{aa, ab, ba, bb\}$$

 Σ^1 = words of length 1

$$\Sigma^2 =$$
words of length 2

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$
$$= \{aa, ab, ba, bb\}$$

- Σ^1 = words of length 1
- Σ^2 = words of length 2
- Σ^3 = words of length 3

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$
$$= \{aa, ab, ba, bb\}$$

- Σ^1 = words of length 1
- Σ^2 = words of length 2

$$\Sigma^3$$
 = words of length 3

 $\Sigma^k =$ words of length k

:

:

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$
$$= \{aa, ab, ba, bb\}$$

 $\Sigma^0 = \{ \epsilon \}$ (empty word, with length 0)

$$\Sigma^1$$
 = words of length 1

$$\Sigma^2$$
 = words of length 2

$$\Sigma^3$$
 = words of length 3

 $\Sigma^k =$ words of length k

:

:

 $aba \cdot \epsilon = aba$ $\epsilon \cdot bbb = bbb$ $w \cdot \epsilon = w$ $\epsilon \cdot w = w$

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$
$$= \{aa, ab, ba, bb\}$$

 $\Sigma^0 = \{ \epsilon \}$ (empty word, with length 0) Σ^1 = words of length 1 $\Sigma^2 =$ words of length 2 Σ^3 = words of length 3 : $\Sigma^k =$ words of length k: $\Sigma^* = \bigcup_{i>0} \Sigma^i$ = set of all finite length words

$$aba \cdot \epsilon = aba$$

 $\epsilon \cdot bbb = bbb$
 $w \cdot \epsilon = w$
 $\epsilon \cdot w = w$

{ ab, abab, ababab,}
words starting with an <i>a</i>
words starting with a b
$\{\epsilon, b, bb, bbb, \ldots\}$
$\{\epsilon, ab, abab, ababab, \ldots\}$
$\{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}$
words starting and ending with an <i>a</i>
$\{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}$

{ ab, abab, ababab,}
$a\Sigma^*$ words starting with an a
words starting with a b
$\{\epsilon, b, bb, bbb, \ldots\}$
$\{\epsilon, ab, abab, ababab, \ldots\}$
$\{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}$
words starting and ending with an <i>a</i>
$\{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}$

{ ab, abab, ababab,}
$a\Sigma^*$ words starting with an a
$b\Sigma^*$ words starting with a b
$\{\epsilon, b, bb, bbb, \ldots\}$
$\{\epsilon, ab, abab, ababab, \ldots\}$
$\{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}$
words starting and ending with an <i>a</i>
$\{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}$

{ ab, abab, ababab,}
$a\Sigma^*$ words starting with an a
$b\Sigma^*$ words starting with a b
$\frac{b^*}{\delta} \{\epsilon, b, bb, bbb, \ldots\}$
$\{\epsilon, ab, abab, ababab, \ldots\}$
$\{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}$
words starting and ending with an <i>a</i>
$\{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}$

Any set of words is called a language

 $\{ab, abab, ababab, \ldots\}$ words starting with an *a* $a\Sigma^*$ $b\Sigma^*$ words starting with a b $b^* \{\epsilon, b, bb, bbb, ...\}$ $(ab)^* \{\epsilon, ab, abab, ababab, \ldots\}$ $\{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}$ words starting and ending with an a $\{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}$

Any set of words is called a language

 $\{ab, abab, ababab, \ldots\}$ $a\Sigma^*$ words starting with an *a* $b\Sigma^*$ words starting with a b $b^* \{\epsilon, b, bb, bbb, ...\}$ $(ab)^* \{\epsilon, ab, abab, ababab, \ldots\}$ $(bbb)^* \{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}$ words starting and ending with an a $\{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}$

 $\Sigma^* \ = \ \text{set of all words over } \Sigma$

Any set of words is called a language

 $\{ab, abab, ababab, \ldots\}$ $a\Sigma^*$ words starting with an *a* $b\Sigma^*$ words starting with a b $b^* \{\epsilon, b, bb, bbb, ...\}$ $(ab)^* \{\epsilon, ab, abab, ababab, \ldots\}$ $(bbb)^* \{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}$ $a\Sigma^*a$ words starting and ending with an a $\{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}$

In this module...

Task: Design Finite Automata for some languages

Words

Languages

Finite Automata

$$L_1 = \{ab, abab, ababab, \ldots\}$$

Design a Finite automaton for L_1

$$L_3 = \{\epsilon, ab, abab, ababab, \ldots\}$$

Design a Finite automaton for L_3

$$\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb \dots\}$$

Design a Finite automaton for Σ^\ast

 $a^* = \{ \epsilon, a, aa, aaa, aaa, a^5, ... \}$

 a^* is the set of all words having only a

Design a Finite automaton for a^*

$$a^* = \{ \epsilon, a, aa, aaa, aaaa, a^5, \ldots \}$$

 a^* is the set of all words having only a

Design a Finite automaton for a^*

$$a^* = \{ \epsilon, a, aa, aaa, aaaa, a^5, \ldots \}$$

 a^* is the set of all words having only a

Design a Finite automaton for a^*

Non-deterministic automaton

Transition Systems

Transition Systems

Same applies in the case of Finite Automata

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

Design a Finite automaton for ab^*

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

Design a Finite automaton for ab^*

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

Design a Finite automaton for ab^*

Non-deterministic automaton

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

 $ba^* = \{b, ba, ba^2, ba^3, ba^4, \ldots\}$

Design a Finite automaton for $ab^* \cup ba^*$

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

 $ba^* = \{b, ba, ba^2, ba^3, ba^4, \ldots\}$

Design a Finite automaton for $ab^* \cup ba^*$

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

 $ba^* = \{b, ba, ba^2, ba^3, ba^4, \ldots\}$

Design a Finite automaton for $ab^* \cup ba^*$

Non-deterministic automaton

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

 $ba^* = \{b, ba, ba^2, ba^3, ba^4, \ldots\}$

Design a Finite automaton for $ab^* \cup ba^*$

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

 $ba^* = \{b, ba, ba^2, ba^3, ba^4, \ldots\}$

$$ab^* = \{a, ab, ab^2, ab^3, ab^4, \ldots\}$$

 $ba^* = \{b, ba, ba^2, ba^3, ba^4, \ldots\}$

Design a Finite automaton for $ab^* \cup ba^*$

Multiple initial states: non-deterministic automaton

Answer: $a \Sigma^* a$ words starting and ending with *a*

Answer: $\Sigma^* ab \Sigma^*$ words containing ab

Answer: $\Sigma^* a \Sigma^* b \Sigma^*$

words where there exists an **a** followed by a **b** after sometime

Answer:
$$\Sigma^* a \ b^* \ c \ \Sigma^* \quad (\Sigma = \{ a, b, c \})$$

words where there exists an a followed by only b's and after sometime a c occurs

 $L = \{\epsilon, ab, aabb, aaabbb, \ldots, a^i b^i, \ldots\}$

Can we design a Finite automaton for L?

 $L = \{\epsilon, ab, aabb, aaabbb, \dots, a^i b^i, \dots\}$

Can we design a Finite automaton for *L*?

Need infinitely many states to remember the number of *a*'s

 $L = \{\epsilon, ab, aabb, aaabbb, \dots, a^i b^i, \dots\}$

Can we design a Finite automaton for L?

Need infinitely many states to remember the number of *a*'s

Cannot construct finite automaton for this language

Regular languages

Definition

A language is called **regular** if it can be **accepted** by a finite automaton

Words Languages

Finite Automata Deterministic (DFA) Non-deterministic (NFA) Regular languages

Finite Automata Deterministic (DFA) Non-deterministic (NFA) Regular languages

Next module: Are DFA and NFA equivalent?