Unit-3: Linear-time properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course
July - November 2015

Module 5:

Liveness properties

Safety: Something bad never happens

Safety: Something bad never happens

Liveness: Something good happens infinitely often

G p : Always p

F p : Sometime p

G p : Always p

F p : Sometime p

G F p : Infinitely often p

Recall...

$P_{0} \ldots P_{3}$: philosophers
$S_{0} \ldots S_{3}$: chop-sticks

Philosopher P_{i} can eat only if
he has access to chop-sticks
$S_{(i-1) \bmod 4}$ and $S_{i \bmod 4}$

Recall...

$P_{0} \ldots P_{3}$: philosophers
$S_{0} \ldots S_{3}$: chop-sticks

Philosopher P_{i} can eat only if
he has access to chop-sticks

$$
S_{(i-1) \bmod 4} \text { and } S_{i \bmod 4}
$$

What should the protocol be so that every philosopher can eat infinitely often?

NuSMV code for the protocol

What properties should be checked in order to reveal the deadlock?

What properties should be checked in order to reveal the deadlock?

GF (phil0.location=eat) \& G F (phil1.location=eat) \& G F (phil2.location=eat) \& G F (phil3.location=eat)

- If counterexample is due to only main process being scheduled
- Not a fair scheduler
- If counterexample is due to only main process being scheduled
- Not a fair scheduler
- Add a FAIRNESS running in the philosopher module
- If counterexample is due to only main process being scheduled
- Not a fair scheduler
- Add a FAIRNESS running in the philosopher module

NuSMV demo

Coming next: Another solution for the dining philosophers problem

Sticks

0	2	2	0

Sticks

Sticks

Sticks

Sticks

Sticks

...

This solution is deadlock-free

Liveness properties

Good happens infinitely often
FAIRNESS running

