
Unit-3: Linear-time properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

1/8



Module 1:
A problem in concurrency

2/8



P0 . . . P3 : processes

S0 . . . S3 : resources

Process Pi can execute

only if

it has access to resources

S(i−1)

mod 4

and Si

mod 4

P0

P1

P2

P3

S0

S1

S3

S2

How should the processes be scheduled so that every process can execute
infinitely often?

3/8



P0 . . . P3 : processes

S0 . . . S3 : resources

Process Pi can execute

only if

it has access to resources

S(i−1)

mod 4

and Si

mod 4

P0

P1

P2

P3

S0

S1

S3

S2

How should the processes be scheduled so that every process can execute
infinitely often?

3/8



P0 . . . P3 : processes

S0 . . . S3 : resources

Process Pi can execute

only if

it has access to resources

S(i−1) mod 4 and Si mod 4

P0

P1

P2

P3

S0

S1

S3

S2

How should the processes be scheduled so that every process can execute
infinitely often?

3/8



P0 . . . P3 : processes

S0 . . . S3 : resources

Process Pi can execute

only if

it has access to resources

S(i−1) mod 4 and Si mod 4

P0

P1

P2

P3

S0

S1

S3

S2

How should the processes be scheduled so that every process can execute
infinitely often?

3/8



Dining philosophers problem (Dijkstra)

P0 . . . P3 : philosophers

S0 . . . S3 : chop-sticks

Philosopher Pi can eat

only if

he has access to chop-sticks

S(i−1) mod 4 and Si mod 4

P0

P1

P2

P3

S0

S1

S3

S2

What should the protocol be so that every philosopher can eat infinitely
often?

4/8



Dining philosophers problem (Dijkstra)

P0 . . . P3 : philosophers

S0 . . . S3 : chop-sticks

Philosopher Pi can eat

only if

he has access to chop-sticks

S(i−1) mod 4 and Si mod 4

P0

P1

P2

P3

S0

S1

S3

S2

What should the protocol be so that every philosopher can eat infinitely
often?

4/8



Coming next: A protocol for the dining philosophers

5/8



Philosopher ithink

req_left req_right

have_left have_right

eat

return

sticks[i]=free
sticks[i]:=i

sticks[i-1]=free
sticks[i-1]:=i

sticks[i-1]=free
sticks[i-1]:=i

sticks[i]=free
sticks[i]:=i

sticks[i]=free
sticks[i-1]=free

NuSMV demo

6/8



Philosopher ithink

req_left req_right

have_left have_right

eat

return

sticks[i]=free
sticks[i]:=i

sticks[i-1]=free
sticks[i-1]:=i

sticks[i-1]=free
sticks[i-1]:=i

sticks[i]=free
sticks[i]:=i

sticks[i]=free
sticks[i-1]=free

NuSMV demo
6/8



A deadlock

〈 think, think, think, think 〉

〈 have_left, have_left, have_left, have_left 〉

0 1 2 3

Sticks

7/8



In this unit...

What properties should be checked to detect deadlocks?

É Module 2: Attach a mathematical meaning to properties

É Module 3, 4: Different examples of properties

É Module 5: Answer to the question

8/8



In this unit...

What properties should be checked to detect deadlocks?

É Module 2: Attach a mathematical meaning to properties

É Module 3, 4: Different examples of properties

É Module 5: Answer to the question

8/8



In this unit...

What properties should be checked to detect deadlocks?

É Module 2: Attach a mathematical meaning to properties

É Module 3, 4: Different examples of properties

É Module 5: Answer to the question

8/8



In this unit...

What properties should be checked to detect deadlocks?

É Module 2: Attach a mathematical meaning to properties

É Module 3, 4: Different examples of properties

É Module 5: Answer to the question

8/8


