Unit-2: Model-checker NuSMV

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2: Simple models in NuSMV

VAR

location: {11,12};

VAR

location: {11,12};

ASSIGN

init(location) := 11;

VAR

location: {11,12};

ASSIGN

init(location) := 11;

next(location) := case

VAR

ASSIGN

location: {11,12};

init(location) := 11;

next(location) := case

(location = 11): 12;

(location = 12) : 11;

esac;

VAR

location: {11,12};

x: 0 .. 100;

ASSIGN

init(location) := l1;

init(x) := 0;

next(location) := case

(location = 11): 12;

(location = 12) : 11;

esac;

x := x+1

MODULE main VAR request: boolean; status: {ready, busy}

VAR

request: boolean;

status: {ready, busy}

VAR

request: boolean;

status: {ready, busy}

ASSIGN

init(status) := ready;

MODULE main VAR. request: boolean; status: {ready, busy} ASSIGN init(status) := ready; next(status) := case request : busy; TRUE : {ready, busy}; esac;

VAR

request: boolean;

status: {ready, busy}

ASSIGN

init(status) := ready;

next(status) := case

request : busy;

TRUE : {ready,busy};

esac;

Coming next: checking requirements in NuSMV

Executions

Executions

Transition system satisfies a requirement

means

all its executions satisfy the requirement

Requirement type 1: G

Requirement type 1: G

Requirement type 1: G

Execution satisfies G (expr) if

expr evaluates to T in all its states

Execution satisfies G (expr) if

expr evaluates to T in all its states

Transition system satisfies G (expr) if

all its executions satisfy G (expr)

Checking the G requirement: NuSMV demo

Requirement type 2: F

Requirement type 2: F

$$\begin{array}{c} \rightarrow & l_1, x=0 \\ \hline l_2, x=0 \\ \hline l_1, x=1 \\ \hline l_2, x=1 \\ \hline l_2, x=9 \\ \hline l_2, x=9 \\ \hline l_1, x=10 \end{array}$$

Requirement type 2: F

Execution satisfies F (expr) if

expr evaluates to T in one of its states

Execution satisfies F (expr) if

expr evaluates to T in one of its states

Transition system satisfies F (expr) if

all its executions satisfy F (expr)

Checking the F requirement: NuSMV demo

Coming next: Combining G and F

Summary

Using NuSMV

Format for writing models

G and F requirements