Unit-12: Modeling timing constraints

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Controllers need to adhere to strict timing constraints

eg. when request for gear change is made, response should be within 1 s

Controllers need to adhere to strict timing constraints

How do we model-check systems with timing constraints?

Adding time to transition systems

Example 1

TRAIN \longrightarrow

Train

Controller

Gate

Train

Controller

Gate

Train

Controller

Gate

Unsafe state: Train is in when gate is still up

Train

Controller

Gate

Unsafe state: Train is in when gate is still up - need to add timing information in the model

after >2 minutes

after $=1$ minute

$<=1$ minute execution time

Coming next: Timed transition systems

Train

Controller

Gate

Train

Controller
Gate

Train

Controller

Gate

Train

Controller

Gate

Train

Guard

Controller

Train || Gate || Controller

Train || Gate || Controller

Synchronous product gives timed transition system for the joint behaviour

Timed transition system

Transition system + Clocks

- Resets: to start measuring time
- Guards: to impose time constraint on action
- Invariants: to limit time spent in a state

UPPAAL - Model-checker for timed transition systems

Kim Larsen, Paul Pettersson, Wang Yi - Computer-Aided Verification Award in 2013 for UPPAAL

www.uppaal.com

UPPAAL demo

UPPAAL demo

- Adding states, transitions and clocks
- Simulation environment
- (Subset of) CTL property verification

Example 2

Inertial delay

$[1,2]$

[1,3]
$[1,3]$
S : Stable (matches truth table)

U: Unstable (does not match truth table)

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$\langle 0,1\rangle$
$\langle 1,1\rangle$
$\langle 1,0\rangle$
$\langle 0,0\rangle$

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$$
\rightarrow\langle 0,1\rangle
$$

\square

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$$
\langle\langle 0,1\rangle
$$

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x-p_{1} \\
& \left\langle x, p_{1}\right\rangle
\end{aligned}
$$

Synchronous product of above will give timed transition system for circuit

Summary

- Modeling timing constraints in systems
- Timed transition systems
- Model-checker UPPAAL

Summary

- Modeling timing constraints in systems
- Timed transition systems
- Model-checker UPPAAL

A theory of timed automata, by Alur and Dill.
Theoretical Computer Science Journal, 1994

