Unit-11: Binary Decision Diagrams (BDDs)

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 3:

Representing transition systems using OBDDs

Transitions:
$0 \longrightarrow 1$
$1 \rightarrow 1$
$1 \longrightarrow 0$

Transitions:

$$
\begin{aligned}
& 0 \longrightarrow 1 \\
& 1 \rightarrow 1 \\
& 1 \longrightarrow 0
\end{aligned}
$$

x	x^{\prime}	
0	0	0
0	1	1
1	0	1
1	1	1

$$
\begin{gathered}
\text { Transitions: } \\
\qquad \begin{array}{c}
0 \rightarrow 1 \\
1 \rightarrow 1 \\
1 \rightarrow 0
\end{array}
\end{gathered}
$$

x	x^{\prime}	
0	0	0
0	1	1
1	0	1
1	1	1

$$
\begin{gathered}
\text { Transitions: } \\
\begin{aligned}
0 & \rightarrow 1 \\
1 & \rightarrow 1 \\
1 & \rightarrow 0
\end{aligned}
\end{gathered}
$$

x	x^{\prime}	
0	0	0
0	1	1
1	0	1
1	1	1

Transitions:

$$
\begin{aligned}
& 0 \rightarrow 1 \\
& 1 \rightarrow 1 \\
& 1 \rightarrow 0
\end{aligned}
$$

x	x^{\prime}	
0	0	0
0	1	1
1	0	1
1	1	1

ROBDD representation of a transition system

$$
\begin{gathered}
\text { Transitions: } \\
00 \rightarrow 01 \\
01 \rightarrow 10 \\
10 \rightarrow 11 \\
11 \rightarrow 00
\end{gathered}
$$

Transitions:	$x_{2} x_{1}$				x_{2}^{\prime}	x_{1}^{\prime}						
$00 \rightarrow 01$												
$01 \rightarrow 10$												
$10 \rightarrow 11$												
$11 \rightarrow 00$							\quad	0	0	0	1	1
:---	:---	:---	:---	:---								
0	1	1	0	1								
1	0	1	1	1								
1	1	0	0	1								

$x_{2} x_{1} x_{2}^{\prime} x_{1}^{\prime}$

0	0	0	1	1
0	1	1	0	1
1	0	1	1	1
1	1	0	0	1

x_{2}
x_{2}
$x_{1}$$x_{2}^{\prime} x_{1}^{\prime}$
$x_{2} x_{2}^{\prime} x_{1} x_{1}^{\prime}$

0	0	0	1	1
0	1	1	0	1
1	1	0	1	1
1	0	1	0	1

$x_{2} x_{1} x_{2}^{\prime} x_{1}^{\prime}$
0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1

$x_{2} x_{2}^{\prime} x_{1} x_{1}^{\prime}$

0	0	0	1	1
0	1	1	0	1
1	1	0	1	1
1	0	1	0	1

x_{2}
x_{1}
$x_{2}^{\prime} x_{1}^{\prime}$
0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1

$x_{2} x_{2}^{\prime} x_{1} x_{1}^{\prime}$
0 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1

ROBDD with ordering $\left[x_{2}, x_{2}^{\prime}, x_{1}, x_{1}^{\prime}\right]$ for ring with 4 nodes

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0		1		0	

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0		1		1	

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1		0		0	

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1		0		1	

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1		1		0	

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	1	0	1

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	1	0	1
1		1		1	

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	1	0	1
1	0	1	0	1	0

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	1	0	1
1	0	1	0	1	0

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	1	0	1
1	0	1	0	1	0

x_{3}	x_{3}^{\prime}	x_{2}	x_{2}^{\prime}	x_{1}	x_{1}^{\prime}
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	1	0	1
0	1	1	0	1	0
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	1	0	1
1	0	1	0	1	0

- Either fully 10-10-10
- Or 01 occurs:
- after 01 only a sequence of 10
- before 01 only sequences of 00 or 11

ROBDD for ring with 2^{3} states

ROBDD for ring with 2^{3} states
has less than $2 \cdot 3 \cdot 3$ nodes

ROBDD for ring with 2^{4} states

ROBDD for ring with 2^{4} states

has less than $2 \cdot 4 \cdot 3$ nodes

ROBDD for ring with 2^{n} states will have less than $6 \cdot n$ nodes

ROBDD for ring with 2^{n} states will have less than $6 \cdot n$ nodes

ROBDDs can efficiently represent transition systems

ROBDD for ring with 2^{n} states will have less than $6 \cdot n$ nodes

ROBDDs can efficiently represent transition systems

LTL and CTL model-checking can be efficiently done using operations on ROBDDs

