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Module 2:
Ordered BDDs
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1 if an even number of variables is 1

flepx,23,24) = { 0

otherwise

f is not sensitive

to ordering
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(X105 %95 X35 245 X5, %) = (X1 +25) - (3 +x,) + (25 + %)

Reduced Ordered BDD (ROBDD) for g with order [x,,x,, x5, x,, %5, %]

7/20



g1, X, X3, X4, X5, ) = (X1 + ;) - (23 +x4) - (x5 + %)

ROBDD for g with order [x;,x5,%x5,%,,%,, %]

8/20
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g is sensitive

to ordering

ROBDD for g with order [x;,x5,%x5,%,,%,, %]

8/20



v

v

\4

Ordered BDDs

BDDs with a specified ordering of variables
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Size of OBDD depends on the chosen ordering

In practice, heuristics exist to find good orderings
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In practice, heuristics exist to find good orderings

Coming next: Operations on OBDDs
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Algorithm to reduce OBDD

» Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

» Intermediate node »

» If O-child and 1-child of 7 have same label, set label of 7 to be
that label

» If there is another node 7 such that 7 has the same variable x;
and the children of 7 and 7 have same label, then set label of 7

to be the label of m

» Otherwise set label of 7 to be next unused integer

Reference: Logic in Computer Science, 27 edition, by Huth and Ryan
Section 6.2.1



Coming next: Algorithm for OBDD, + OBDD,
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Reduce the resulting OBDD
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Algorithm for OBDD, + OBDD,
apply(+,7,s)

If both 7 and s are terminals, create a terminal node » +s

If both  and s are x; nodes, create an x; node with:
» leftchild:  apply(+,left(r),left(s))
» right child:  apply(+,right(r),right(s))

If r is x; node and s is a terminal or an x; node with j > i, create an x;
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If s is x; node and 7 is a terminal: similar to Case 3
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Algorithm for OBDD, + OBDD,
apply(+,7,s)

If both 7 and s are terminals, create a terminal node » +s

If both  and s are x; nodes, create an x; node with:
» leftchild:  apply(+,left(r),left(s))
» right child:  apply(+,right(r),right(s))

If r is x; node and s is a terminal or an x; node with j > i, create an x;

node with:

» leftchild:  apply(+,left(r),s)
» right child:  apply(+,right(r),s)

If s is x; node and 7 is a terminal: similar to Case 3

OBDD, + OBDD,: apply(+,root,,root,) and then reduce
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Operations on BDDs

OR: apply(+ ,root,,root,)
AND:  apply(-,root,,root,)

XOR: apply(XOR,root,,root,)

NOT:  Use the fact that f = f XOR 1
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