Unit-11: Binary Decision Diagrams (BDDs)

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2: Ordered BDDs

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{if an even number of variables is 1} \\ 0 & \text{otherwise} \end{cases}$$

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{if an even number of variables is 1} \\ 0 & \text{otherwise} \end{cases}$$

Ordered BDD for f with order $[x_1, x_2, x_3, x_4]$

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{if an even number of variables is 1} \\ 0 & \text{otherwise} \end{cases}$$

Reduced Ordered BDD for f with order $[x_1, x_2, x_3, x_4]$

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{if an even number of variables is 1} \\ 0 & \text{otherwise} \end{cases}$$

Ordered BDD for f with order $[x_3, x_1, x_4, x_2]$

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{if an even number of variables is 1} \\ 0 & \text{otherwise} \end{cases}$$

Reduced Ordered BDD for f with order $[x_3, x_1, x_4, x_2]$

$$f(x_1, x_2, x_3, x_4) = \begin{cases} 1 & \text{if an even number of variables is 1} \\ 0 & \text{otherwise} \end{cases}$$

Reduced Ordered BDD for f with order $[x_3, x_1, x_4, x_2]$

$$g(x_1, x_2, x_3, x_4, x_5, x_6) = (x_1 + x_2) \cdot (x_3 + x_4) \cdot (x_5 + x_6)$$

Reduced Ordered BDD (ROBDD) for g with order $[x_1, x_2, x_3, x_4, x_5, x_6]$

ROBDD for g with order $[x_1, x_3, x_5, x_2, x_4, x_6]$

ROBDD for g with order $[x_1, x_3, x_5, x_2, x_4, x_6]$

Ordered BDDs

- ► BDDs with a **specified ordering** of variables
- ► For a given ordering, the reduced OBDD is **unique**
- Size of OBDD depends on the chosen ordering
- ► In practice, **heuristics** exist to find good orderings

Ordered BDDs

- ► BDDs with a **specified ordering** of variables
- ► For a given ordering, the reduced OBDD is **unique**
- ► Size of OBDD **depends** on the chosen **ordering**
- ► In practice, **heuristics** exist to find good orderings

Coming next: Operations on OBDDs

Algorithm to reduce an OBDD

Algorithm to reduce OBDD

Algorithm to reduce OBDD

▶ Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

Algorithm to reduce OBDD

- ▶ Leaves: Label all 0 leaves with #0 and all 1 leaves with #1
- ▶ Intermediate node *n*

- ▶ Leaves: Label all 0 leaves with #0 and all 1 leaves with #1
- ▶ Intermediate node *n*
 - ► If 0-child and 1-child of *n* have same label, set label of *n* to be that label

- ▶ Leaves: Label all 0 leaves with #0 and all 1 leaves with #1
- ▶ Intermediate node n
 - ► If 0-child and 1-child of *n* have same label, set label of *n* to be that label
 - ▶ If there is **another** node *m* such that *m* has the **same variable** *x*_i and the **children** of *n* and *m* have **same** label, then set label of *n* to be the label of *m*

- ▶ Leaves: Label all 0 leaves with #0 and all 1 leaves with #1
- ▶ Intermediate node n
 - ► If 0-child and 1-child of *n* have same label, set label of *n* to be that label
 - ▶ If there is **another** node *m* such that *m* has the **same variable** *x*_i and the **children** of *n* and *m* have **same** label, then set label of *n* to be the label of *m*
 - ► Otherwise set label of *n* to be **next unused integer**

- ▶ Leaves: Label all 0 leaves with #0 and all 1 leaves with #1
- ▶ Intermediate node n
 - ► If 0-child and 1-child of *n* have same label, set label of *n* to be that label
 - ▶ If there is **another** node *m* such that *m* has the **same variable** *x*_i and the **children** of *n* and *m* have **same** label, then set label of *n* to be the label of *m*
 - ▶ Otherwise set label of *n* to be **next unused integer**

Reference: Logic in Computer Science, 2nd edition, by *Huth* and *Ryan*Section 6.2.1

Coming next: Algorithm for $OBDD_1 + OBDD_2$

Algorithm for OBDD₁ + OBDD₂

Algorithm for OBDD₁ + OBDD₂

apply(+,r,s)

$$apply(+,r,s)$$

▶ If both r and s are terminals, create a terminal node r + s

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:
 - ▶ left child: apply(+,left(r),left(s))

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:
 - ▶ left child: apply(+,left(r),left(s))
 - ▶ right child: apply(+,right(r),right(s))

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:
 - ▶ left child: apply(+,left(r),left(s))
 - ▶ right child: apply(+,right(r),right(s))
- ▶ If r is x_i node and s is a terminal or an x_j node with j > i, create an x_i node with:

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:
 - left child: apply(+,left(r),left(s))
 right child: apply(+,right(r),right(s))
 - right child: appry(+,right(7),right(3))
- ▶ If r is x_i node and s is a terminal or an x_j node with j > i, create an x_i node with:
 - left child: apply(+, left(r), s)

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:
 - left child: apply(+,left(r),left(s))
 right child: apply(+,right(r),right(s))
- ▶ If r is x_i node and s is a terminal or an x_j node with j > i, create an x_i node with:
 - left child: apply(+, left(r), s)
 - ▶ right child: apply(+,right(r),s)

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:
 - left child: apply(+,left(r),left(s))
 right child: apply(+,right(r),right(s))
- If r is x_i node and s is a terminal or an x_j node with j > i, create an x_i node with:
 - left child: apply(+,left(r),s)
 right child: apply(+,right(r),s)
- ▶ If s is x_i node and r is a terminal: similar to Case 3

$$apply(+,r,s)$$

- ▶ If both r and s are terminals, create a terminal node r + s
- ▶ If both r and s are x_i nodes, create an x_i node with:
 - ▶ left child: apply(+,left(r),left(s))
 - ▶ right child: apply(+,right(r),right(s))
- ▶ If r is x_i node and s is a terminal or an x_j node with j > i, create an x_i node with:
 - left child: apply(+, left(r), s)
 - ▶ right child: apply(+,right(r),s)
- If s is x_i node and r is a terminal: similar to Case 3

 $OBDD_1 + OBDD_2$: apply(+, root₁, root₂) and then reduce

Operations on BDDs

```
ightharpoonup OR: apply(+,root_1,root_2)
```

▶ AND: apply(\cdot , root₁, root₂)

► XOR: apply(XOR, root₁, root₂)

▶ NOT: Use the fact that $\overline{f} = f$ XOR 1

OBDDs

Reduction algorithm

Operations on OBDDs