Unit-11: Binary Decision Diagrams (BDDs)

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2:
 Ordered BDDs

$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if an even number of variables is } 1 \\ 0 & \text { otherwise }\end{cases}$

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if an even number of variables is } 1 \\ 0 & \text { otherwise }\end{cases}
$$

Ordered BDD for f with order $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if an even number of variables is } 1 \\ 0 & \text { otherwise }\end{cases}
$$

Reduced Ordered BDD for f with order $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if an even number of variables is } 1 \\ 0 & \text { otherwise }\end{cases}
$$

Ordered BDD for f with order $\left[x_{3}, x_{1}, x_{4}, x_{2}\right]$

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if an even number of variables is } 1 \\ 0 & \text { otherwise }\end{cases}
$$

Reduced Ordered BDD for f with order $\left[x_{3}, x_{1}, x_{4}, x_{2}\right]$

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if an even number of variables is } 1 \\ 0 & \text { otherwise }\end{cases}
$$

f is not sensitive to ordering

Reduced Ordered BDD for f with order $\left[x_{3}, x_{1}, x_{4}, x_{2}\right]$

$$
g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{1}+x_{2}\right) \cdot\left(x_{3}+x_{4}\right) \cdot\left(x_{5}+x_{6}\right)
$$

Reduced Ordered BDD (ROBDD) for g with order $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]$

ROBDD for g with order $\left[x_{1}, x_{3}, x_{5}, x_{2}, x_{4}, x_{6}\right]$

ROBDD for g with order $\left[x_{1}, x_{3}, x_{5}, x_{2}, x_{4}, x_{6}\right]$

Ordered BDDs

- BDDs with a specified ordering of variables
- For a given ordering, the reduced OBDD is unique
- Size of OBDD depends on the chosen ordering
- In practice, heuristics exist to find good orderings

Ordered BDDs

- BDDs with a specified ordering of variables
- For a given ordering, the reduced OBDD is unique
- Size of OBDD depends on the chosen ordering
- In practice, heuristics exist to find good orderings

Coming next: Operations on OBDDs

Algorithm to reduce an OBDD

Algorithm to reduce OBDD

Algorithm to reduce OBDD

- Leaves: Label all 0 leaves with \#0 and all 1 leaves with \#1

Algorithm to reduce OBDD

- Leaves: Label all 0 leaves with \#0 and all 1 leaves with \#1
- Intermediate node n

Algorithm to reduce OBDD

- Leaves: Label all 0 leaves with \#0 and all 1 leaves with \#1
- Intermediate node n
- If 0 -child and 1 -child of n have same label, set label of n to be that label

Algorithm to reduce OBDD

- Leaves: Label all 0 leaves with \#0 and all 1 leaves with \#1
- Intermediate node n
- If 0 -child and 1 -child of n have same label, set label of n to be that label
- If there is another node m such that m has the same variable x_{i} and the children of n and m have same label, then set label of n to be the label of m

Algorithm to reduce OBDD

- Leaves: Label all 0 leaves with \#0 and all 1 leaves with \#1
- Intermediate node n
- If 0 -child and 1 -child of n have same label, set label of n to be that label
- If there is another node m such that m has the same variable x_{i} and the children of n and m have same label, then set label of n to be the label of m
- Otherwise set label of n to be next unused integer

Algorithm to reduce OBDD

- Leaves: Label all 0 leaves with \#0 and all 1 leaves with \#1
- Intermediate node n
- If 0 -child and 1 -child of n have same label, set label of n to be that label
- If there is another node m such that m has the same variable x_{i} and the children of n and m have same label, then set label of n to be the label of m
- Otherwise set label of n to be next unused integer

Reference: Logic in Computer Science, $2^{\text {nd }}$ edition, by Huth and Ryan Section 6.2.1

Coming next: Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

©

$\left(R_{1}, S_{1}\right)$
(

$$
{ }_{\left(R_{2}, S_{2}\right)}^{\overbrace{}^{(2)}},{ }^{\left(R_{1}, S_{1}\right)}
$$

\bigcirc

Reduce the resulting OBDD

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:
- left child: $\quad \operatorname{apply}(+, \operatorname{left}(r), \operatorname{left}(s))$

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:
- left child: $\quad \operatorname{apply}(+, \operatorname{left}(r), \operatorname{left}(s))$
- right child: apply(+, right (r), right $(s))$

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:
- left child: $\quad \operatorname{apply}(+, \operatorname{left}(r), \operatorname{left}(s))$
- right child: apply(+, right (r), right $(s))$
- If r is x_{i} node and s is a terminal or an x_{j} node with $j>i$, create an x_{i} node with:

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:
- left child: $\quad \operatorname{apply}(+, \operatorname{left}(r), \operatorname{left}(s))$
- right child: apply(+, right $(r), \operatorname{right}(s))$
- If r is x_{i} node and s is a terminal or an x_{j} node with $j>i$, create an x_{i} node with:
- left child: apply(+,left $(r), s)$

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:
- left child: $\quad \operatorname{apply}(+, \operatorname{left}(r), \operatorname{left}(s))$
- right child: apply(+, right $(r), \operatorname{right}(s))$
- If r is x_{i} node and s is a terminal or an x_{j} node with $j>i$, create an x_{i} node with:
- left child: apply(+,left $(r), s)$
- right child: $\operatorname{apply}(+, \operatorname{right}(r), s)$

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:
- left child: $\quad \operatorname{apply}(+, \operatorname{left}(r), \operatorname{left}(s))$
- right child: apply(+, right (r), right $(s))$
- If r is x_{i} node and s is a terminal or an x_{j} node with $j>i$, create an x_{i} node with:
- left child: apply(+,left $(r), s)$
- right child: apply(+, $\operatorname{right}(r), s)$
- If s is x_{i} node and r is a terminal: similar to Case 3

Algorithm for $\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}$

$$
\operatorname{apply}(+, r, s)
$$

- If both r and s are terminals, create a terminal node $r+s$
- If both r and s are x_{i} nodes, create an x_{i} node with:
- left child: $\quad \operatorname{apply}(+, \operatorname{left}(r), \operatorname{left}(s))$
- right child: apply(+, right (r), right $(s))$
- If r is x_{i} node and s is a terminal or an x_{j} node with $j>i$, create an x_{i} node with:
- left child: apply(+,left $(r), s)$
- right child: apply(+, $\operatorname{right}(r), s)$
- If s is x_{i} node and r is a terminal: similar to Case 3
$\mathrm{OBDD}_{1}+\mathrm{OBDD}_{2}: \operatorname{apply}\left(+\right.$, root $_{1}$, root $\left._{2}\right)$ and then reduce

Operations on BDDs

- OR: $\operatorname{apply}\left(+, \operatorname{root}_{1}, \operatorname{root}_{2}\right)$
- AND: $\operatorname{apply}\left(\cdot, \operatorname{root}_{1}\right.$, root $\left._{2}\right)$
- XOR: $\operatorname{apply}\left(\mathrm{XOR}, \operatorname{root}_{1}, \operatorname{root}_{2}\right)$
- NOT: Use the fact that $\bar{f}=f$ XOR 1

OBDDs

Reduction algorithm

Operations on OBDDs

