Unit-11: Binary Decision Diagrams (BDDs)

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2:
Ordered BDDs

1 if an even number of variables is 1
flepx,23,04) =

0 otherwise

3/20

1 if an even number of variables is 1
flepx,23,04) =

0 otherwise

Ordered BDD for f with order [x,x,,x5,x,]

3/20

1 if an even number of variables is 1

0 otherwise

frpsx0,%5,%) = {

Reduced Ordered BDD for f with order [x,,x,,x;,x,]

4/20

1 if an even number of variables is 1

frpsx0,%5,%) = {

0 otherwise

Ordered BDD for f with order [x;,x,,x,,x,]

5/20

1 if an even number of variables is 1

0 otherwise

frepsx0,%5,%) = {

Reduced Ordered BDD for f with order [xy,x,,x,,x,]

6/20

1 if an even number of variables is 1

flepx,23,24) = { 0

otherwise

f is not sensitive

to ordering

Reduced Ordered BDD for f with order [xy,x,,x,,x,]

6/20

(X105 %95 X35 245 X5, %) = (X1 +25) - (3 +x,) + (25 + %)

Reduced Ordered BDD (ROBDD) for g with order [x,,x,, x5, x,, %5, %]

7/20

g1, X, X3, X4, X5,) = (X1 + ;) - (23 +x4) - (x5 + %)

ROBDD for g with order [x;,x5,%x5,%,,%,, %]

8/20

g1, X, X3, X4, X5,) = (X1 + ;) - (23 +x4) - (x5 + %)

g is sensitive

to ordering

ROBDD for g with order [x;,x5,%x5,%,,%,, %]

8/20

v

v

\4

Ordered BDDs

BDDs with a specified ordering of variables
For a given ordering, the reduced OBDD is unique
Size of OBDD depends on the chosen ordering

In practice, heuristics exist to find good orderings

v

v

\4

Ordered BDDs

BDDs with a specified ordering of variables
For a given ordering, the reduced OBDD is unique
Size of OBDD depends on the chosen ordering

In practice, heuristics exist to find good orderings

Coming next: Operations on OBDDs

Algorithm to reduce an OBDD

11/20

11/20

11/20

11/20

11/20

11/20

11/20

11/20

11/20

12/20

7 ’
#2 4 ’
’ ’
; I I I
1 1 1 1
1 1 1 1

12/20

12/20

12/20

12/20

12/20

12/20

12/20

#5
REDUCE

12/20

Algorithm to reduce OBDD

Algorithm to reduce OBDD

» Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

Algorithm to reduce OBDD

» Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

» Intermediate node »

Algorithm to reduce OBDD

» Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

» Intermediate node »

» If O-child and 1-child of 7 have same label, set label of 7 to be
that label

Algorithm to reduce OBDD

» Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

» Intermediate node »

» If O-child and 1-child of 7 have same label, set label of 7 to be
that label

» If there is another node 7 such that 7 has the same variable x;
and the children of 7 and 7 have same label, then set label of 7
to be the label of m

Algorithm to reduce OBDD

» Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

» Intermediate node »

» If O-child and 1-child of 7 have same label, set label of 7 to be
that label

» If there is another node 7 such that 7 has the same variable x;
and the children of 7 and 7 have same label, then set label of 7

to be the label of m

» Otherwise set label of 7 to be next unused integer

Algorithm to reduce OBDD

» Leaves: Label all 0 leaves with #0 and all 1 leaves with #1

» Intermediate node »

» If O-child and 1-child of 7 have same label, set label of 7 to be
that label

» If there is another node 7 such that 7 has the same variable x;
and the children of 7 and 7 have same label, then set label of 7

to be the label of m

» Otherwise set label of 7 to be next unused integer

Reference: Logic in Computer Science, 27 edition, by Huth and Ryan
Section 6.2.1

Coming next: Algorithm for OBDD, + OBDD,

14/20

16/20

16/20

(R1:81)

16/20

16/20

(Ry,8,) .- (Rs,53)

16/20

(Ry,8,) .- (Rs,53)

16/20

(Ry,8,) .- (Rs,53)

16/20

(Ry,8,) .- (Rs,53)

16/20

(Ry,8,) .- (Rs,53)

16/20

(Ry,8,) .- (Rs,53)

16/20

(R3,55)

16/20

16/20

16/20

16/20

16/20

16/20

16/20

17/20

17/20

Ry
9,
Ry /7
&
‘ R,
e
Ry @)
Izl (Ry,51)
(Ry,S3) L7

17/20

(R2,53) - (R3.5,)

-
- g
@’

17/20

17/20

17/20

17/20

17/20

17/20

17/20

17/20

17/20

17/20

17/20

R,S;)
(R4:S3),#

,

17/20

Ry, S ’
(R4:S3),#

,

17/20

17/20

17/20

Reduce the resulting OBDD

17/20

Algorithm for OBDD, + OBDD,

Algorithm for OBDD, + OBDD,

apply(+,7,s)

Algorithm for OBDD, + OBDD,
apply(+,7,s)

» If both r and s are terminals, create a terminal node » +s

Algorithm for OBDD, + OBDD,
apply(+,7,s)

» If both r and s are terminals, create a terminal node » +s

> If both r and s are x; nodes, create an x; node with:

Algorithm for OBDD, + OBDD,
apply(+,7,s)

» If both r and s are terminals, create a terminal node » +s

> If both r and s are x; nodes, create an x; node with:

» leftchild: apply(+,left(r),left(s))

Algorithm for OBDD, + OBDD,
apply(+,7,s)

» If both r and s are terminals, create a terminal node » +s

> If both r and s are x; nodes, create an x; node with:

» leftchild: apply(+,left(r),left(s))
» right child: apply(+,right(r),right(s))

Algorithm for OBDD, + OBDD,
apply(+,7,s)

» If both r and s are terminals, create a terminal node » +s

> If both r and s are x; nodes, create an x; node with:
» leftchild: apply(+,left(r),left(s))
» right child: apply(+,right(r),right(s))

> Ifrisx; node and s is a terminal or an x; node with j > 7, create an x;

node with:

Algorithm for OBDD, + OBDD,
apply(+,7,s)

» If both r and s are terminals, create a terminal node » +s

> If both r and s are x; nodes, create an x; node with:
» leftchild: apply(+,left(r),left(s))
» right child: apply(+,right(r),right(s))

> Ifrisx; node and s is a terminal or an x; node with j > 7, create an x;

node with:

» left child: apply(+,left(r),s)

Algorithm for OBDD, + OBDD,
apply(+,7,s)

» If both r and s are terminals, create a terminal node » +s

> If both r and s are x; nodes, create an x; node with:
» leftchild: apply(+,left(r),left(s))
» right child: apply(+,right(r),right(s))

> Ifrisx; node and s is a terminal or an x; node with j > 7, create an x;

node with:

» leftchild: apply(+,left(r),s)
» right child: apply(+,right(r),s)

v

v

v

v

Algorithm for OBDD, + OBDD,
apply(+,7,s)

If both 7 and s are terminals, create a terminal node » +s

If both and s are x; nodes, create an x; node with:
» leftchild: apply(+,left(r),left(s))
» right child: apply(+,right(r),right(s))

If r is x; node and s is a terminal or an x; node with j > i, create an x;

node with:

» leftchild: apply(+,left(r),s)
» right child: apply(+,right(r),s)

If s is x; node and 7 is a terminal: similar to Case 3

v

v

v

v

Algorithm for OBDD, + OBDD,
apply(+,7,s)

If both 7 and s are terminals, create a terminal node » +s

If both and s are x; nodes, create an x; node with:
» leftchild: apply(+,left(r),left(s))
» right child: apply(+,right(r),right(s))

If r is x; node and s is a terminal or an x; node with j > i, create an x;

node with:

» leftchild: apply(+,left(r),s)
» right child: apply(+,right(r),s)

If s is x; node and 7 is a terminal: similar to Case 3

OBDD, + OBDD,: apply(+,root,,root,) and then reduce

\4

\4

v

v

Operations on BDDs

OR: apply(+ ,root,,root,)
AND: apply(-,root,,root,)

XOR: apply(XOR,root,,root,)

NOT: Use the fact that f = f XOR 1

20/20

