Unit-10: Algorithms for CTL

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course
July - November 2015

Module 2:
 EX, EU and EG

CTL model-checking problem

Given transition system M and a CTL formula ϕ, find all states of M that satisfy ϕ

CTL model-checking problem

Given transition system M and a CTL formula ϕ, find all states of M that satisfy ϕ

In this unit: Special case when ϕ is either E X, E U or E G

Part 1:

Algorithm for E X

$\operatorname{EX}\left(p_{1} \wedge p_{2}\right)$

EX $\left(p_{1} \wedge \neg p_{2}\right)$

EX $\left(p_{1} \wedge \neg p_{2}\right)$

$\operatorname{EX}\left(p_{1} \wedge \neg p_{2}\right)$

EX $\left(p_{1} \wedge \neg p_{2}\right)$

$\operatorname{EX}\left(p_{1} \wedge \neg p_{2}\right)$

$\mathbf{E X}\left(p_{1} \wedge \neg p_{2}\right)$

EX $\left(p_{1} \wedge \neg p_{2}\right)$

Algorithm for EX ϕ

Algorithm for EX ϕ

Suppose states satisfying ϕ have been labelled

Algorithm for EX ϕ

Suppose states satisfying ϕ have been labelled

State s is labelled with $\mathbf{E X} \phi$ if there exists a successor which is labelled ϕ

Part 2:

Algorithm for E U

$\mathrm{E}\left(p_{1} \mathrm{U} p_{2}\right)$

$$
\mathbf{E}\left(\neg p_{1} \mathbf{U} \neg p_{2}\right)
$$

$$
\mathrm{E}\left(\neg p_{1} \mathrm{U} \neg p_{2}\right)
$$

$$
\mathbf{E}\left(\neg p_{1} \mathbf{U} \neg p_{2}\right)
$$

$$
\mathrm{E}\left(\neg p_{1} \mathrm{U} \neg p_{2}\right)
$$

$\mathrm{E}\left(\neg p_{1} \mathrm{U} \neg p_{2}\right)$

Algorithm for $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$

- If any state is labelled with ϕ_{2}, label it with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$
- Repeat:

Label any state with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$ if it is labelled with ϕ_{1} and at least one successor is labelled with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$ until no change

Algorithm for $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$

- If any state is labelled with ϕ_{2}, label it with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$
- Repeat:

Label any state with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$ if it is labelled with ϕ_{1} and at least one successor is labelled with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$ until no change

Algorithm for $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$

- If any state is labelled with ϕ_{2}, label it with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$
- Repeat:

Label any state with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$ if it is labelled with ϕ_{1} and at least one successor is labelled with $\mathrm{E}\left(\phi_{1} \mathrm{U} \phi_{2}\right)$ until no change

Part 3:

Algorithm for E G

E G p_{1}

E G p_{1}

E G p_{1}

E G p_{1}

E G p_{1}

No state of the above transition system satisfies E G p_{1}

E G p_{1}

E G p_{1}

E G p_{1}

E G p_{1}

E G p_{1}

Algorithm for E G ϕ

Algorithm for E G ϕ

- Label all states with E G ϕ

Algorithm for E G ϕ

- Label all states with E G ϕ
- If any state is not labelled with ϕ, delete the label E G ϕ

Algorithm for E G ϕ

- Label all states with E G ϕ
- If any state is not labelled with ϕ, delete the label E G ϕ
- Repeat:

Delete the label E G ϕ from a state if none of its successors is labelled with E G ϕ
until no change

Algorithm for E G ϕ

- Label all states with E G ϕ
- If any state is not labelled with ϕ, delete the label E G ϕ

- Repeat:

Delete the label E G ϕ from a state if none of its successors is labelled with E G ϕ
until no change

Algorithm for E G ϕ

- Label all states with E G ϕ
- If any state is not labelled with ϕ, delete the label E G ϕ

- Repeat:

Delete the label E G ϕ from a state if none of its successors is labelled with E G ϕ
until no change

Algorithm for E G ϕ

- Label all states with E G ϕ
- If any state is not labelled with ϕ, delete the label E G ϕ

- Repeat:

Delete the label E G ϕ from a state if none of its successors is labelled with E G ϕ
until no change

Summary

Algorithms

EX, EU, EG

