Computation Tree Logic

B. Srivathsan

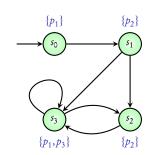
Chennai Mathematical Institute

Model Checking and Systems Verification

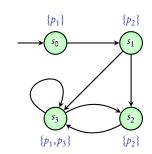
January - April 2016

Module 1:

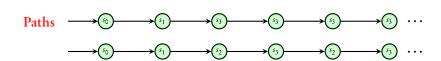
Tree behaviour of a transition system

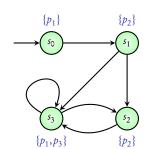


Transition System

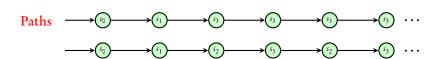


Transition System





Transition System



Traces
$$\{p_1\}\{p_2\}\{p_1,p_3\}\{p_1,p_3\}\{p_1,p_3\}\{p_1,p_3\}\dots$$

 $\{p_1\}\{p_2\}\{p_2\}\{p_1,p_3\}\{p_2\}\{p_1,p_3\}\{p_2\}\{p_1,p_3\}\dots$

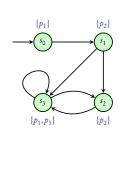
In this unit

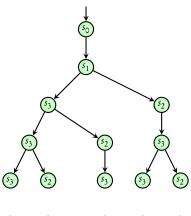
A tree view of the transition system ...

In this unit

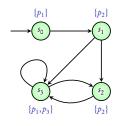
A tree view of the transition system ...

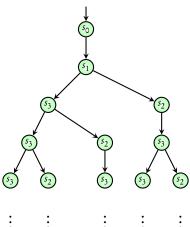
... obtained by repeatedly unfolding it





Computation tree

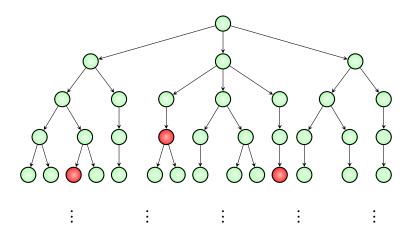




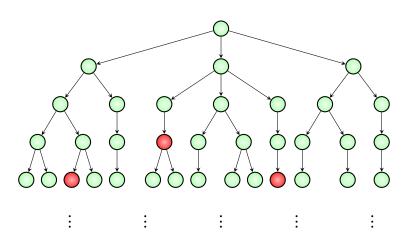
LTL talks about properties of paths

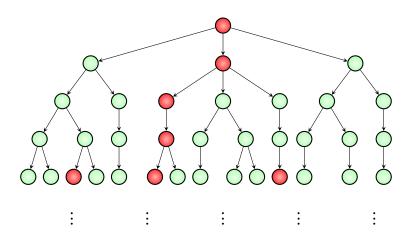
LTL talks about properties of paths

Coming next: Properties of trees

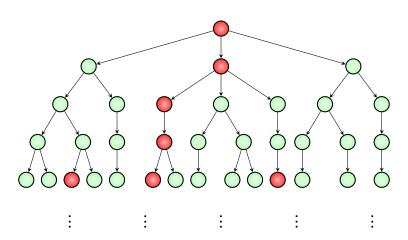


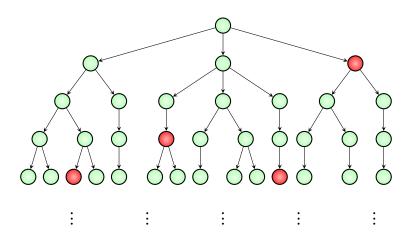
Exists a path satisfying F(red)



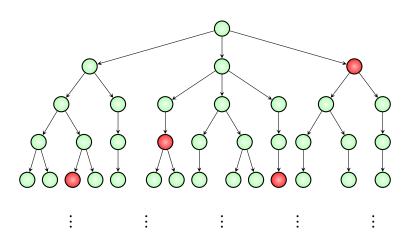


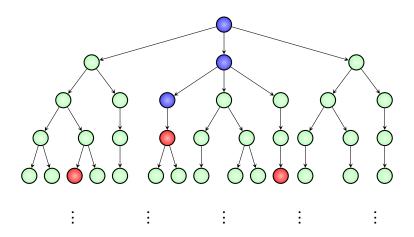
Exists a path satisfying G(red)



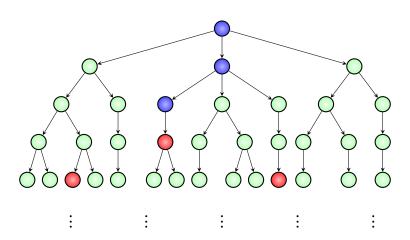


Exists a path satisfying X(red)





Exists a path satisfying blue U red



Properties of trees

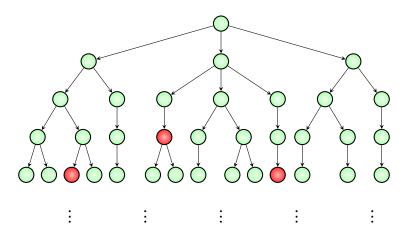
Type 1: Exists a path satisfying LTL formula ϕ

Properties of trees

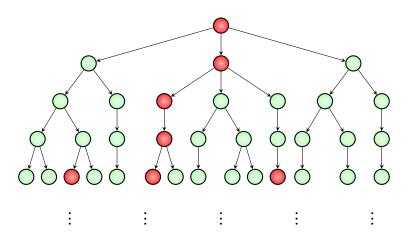
Type 1: Exists a path satisfying LTL formula ϕ

E operator: $\mathbf{E} \phi$

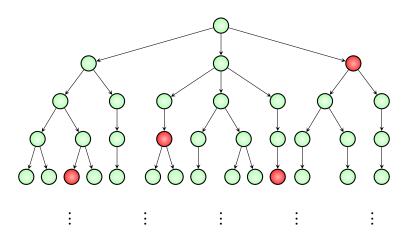
Exists a path satisfying F(red): E F(red)



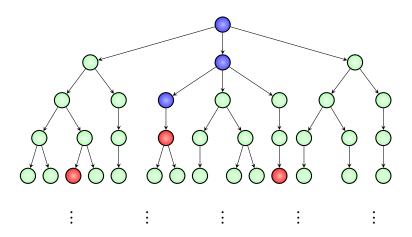
Exists a path satisfying G(red): E G(red)

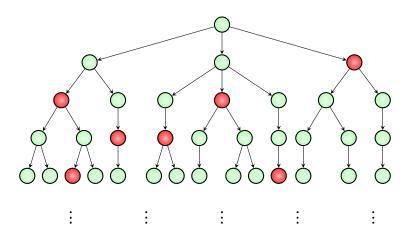


Exists a path satisfying X(red): EX(red)

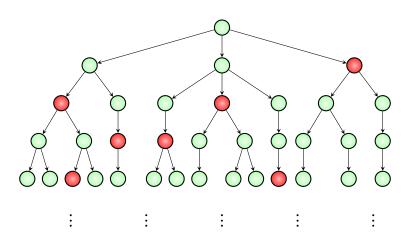


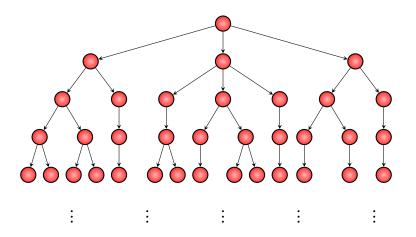
Exists a path satisfying blue U red: E (blue U red)



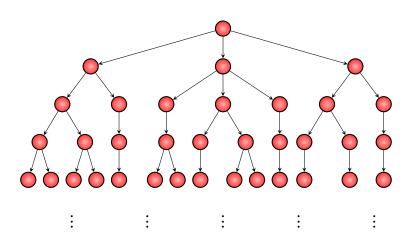


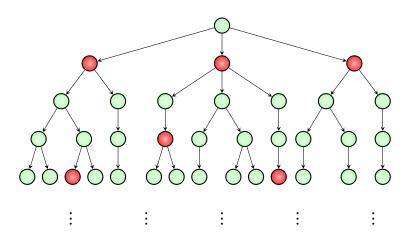
All paths satisfy F(red)



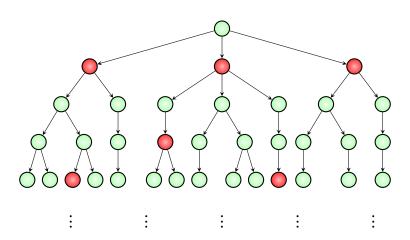


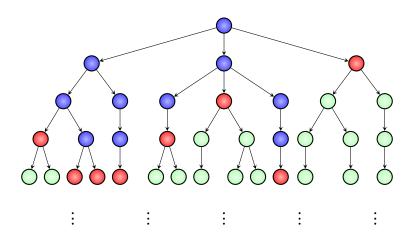
All paths satisfy G(red)



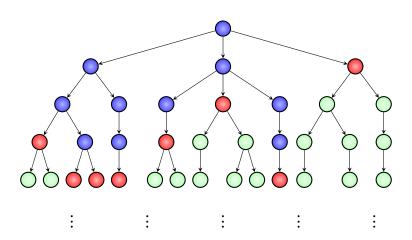


All paths satisfy X(red)





All paths satisfy blue U red



Properties of trees

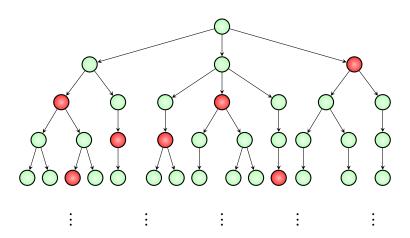
Type 2: All paths satisfy LTL formula ϕ

Properties of trees

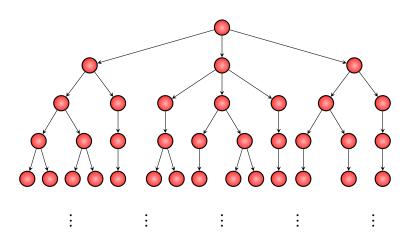
Type 2: All paths satisfy LTL formula ϕ

A operator: $\mathbf{A} \phi$

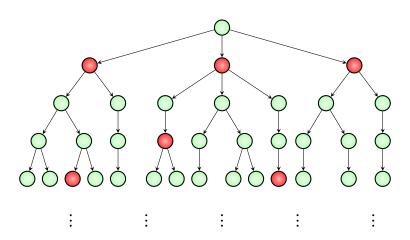
All paths satisfy F(red): A F(red)



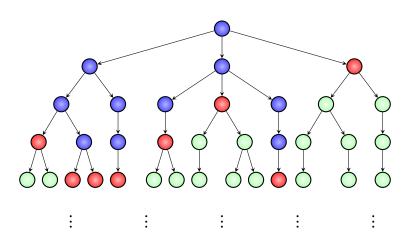
All paths satisfy G(red): A G(red)



All paths satisfy X(red): A X(red)



All paths satisfy blue U red: A blue U red



Properties of trees

Exists a path satisfying path property ϕ : **E** ϕ

• All paths satisfy path property ϕ : A ϕ

Properties of trees

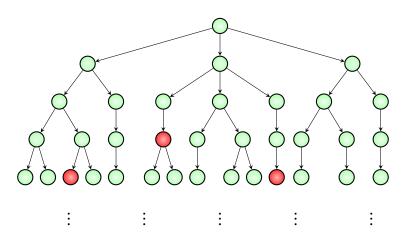
Exists a path satisfying path property ϕ : **E** ϕ

► All paths satisfy path property ϕ : A ϕ

Coming next: Mixing A and E

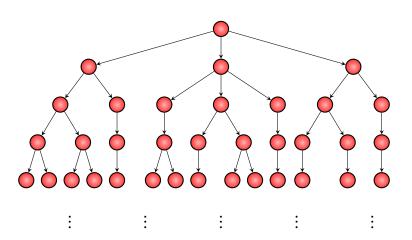
Recall...

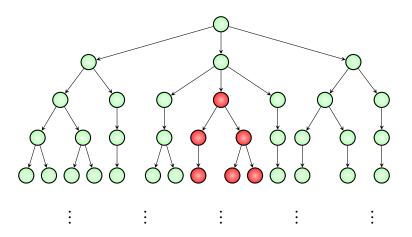
Exists a path satisfying F(red): E F(red)



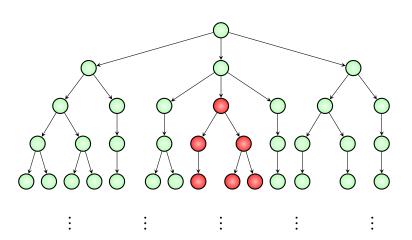
Recall...

All paths satisfy G(red): A G(red)





EFAG (red)

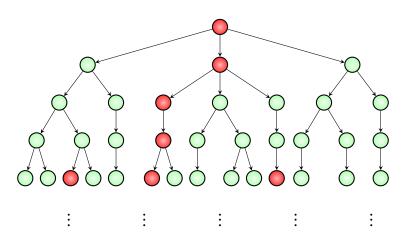


A F A G (red)



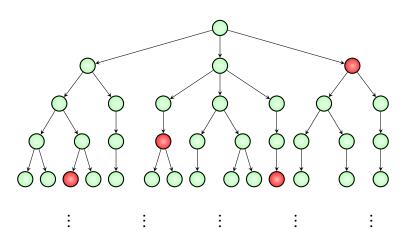
Recall...

Exists a path satisfying G(red): E G(red)

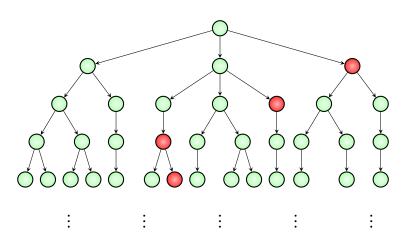


Recall...

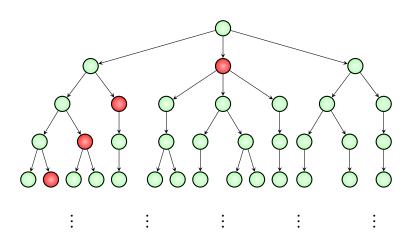
Exists a path satisfying X(red): EX(red)



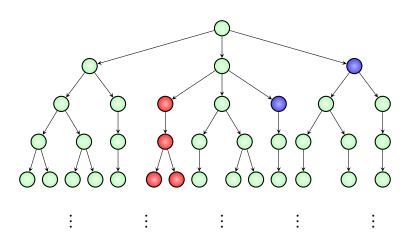
EGEX (red)



EGEX (red)



E (E X blue) U (A G red)



Summary

Transition system as a tree

Computation tree

E and A operators

Module 2: CTL*

Recap

- ▶ Path formulae
 - Express properties of paths
 - ▶ LTL

- ► Properties on trees
 - ► A and E operators
 - Mixing A and E

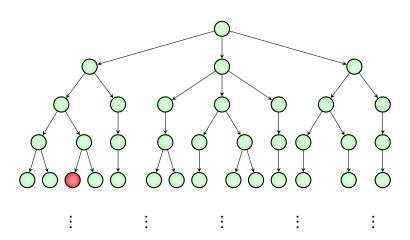
Recap

- ▶ Path formulae
 - Express properties of paths
 - ► LTL

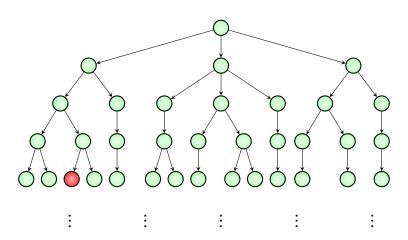
- ► Properties on trees
 - ► A and E operators
 - ► Mixing A and E

Coming next: A logic for expressing properties on trees

$$\phi :=$$

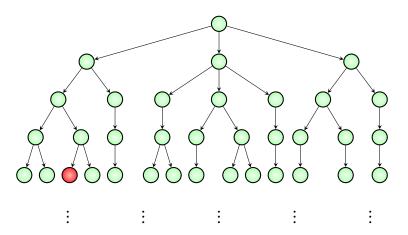


$$\phi := \text{true} \mid$$



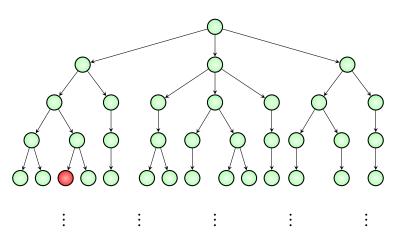
$$\phi := \text{true} \mid p_i \mid$$

 $p_i \in AP$



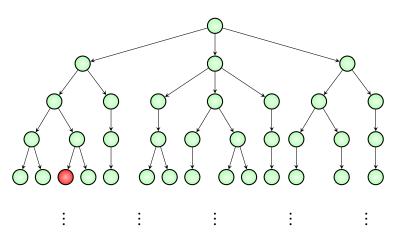
$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 |$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae

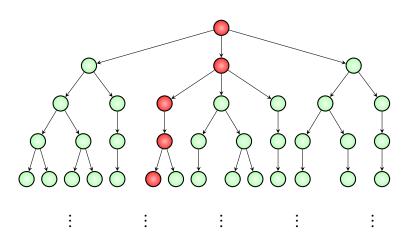


$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae

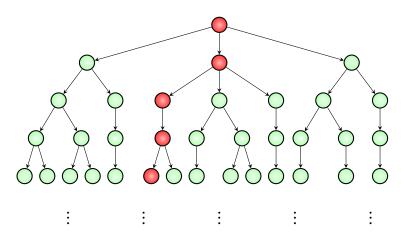


 $\alpha :=$



$$\alpha := \phi$$

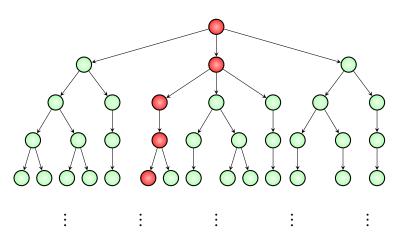
 ϕ : State formula



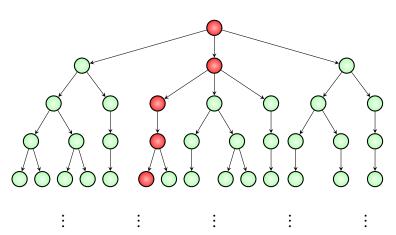
$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid$$

 ϕ : State formula

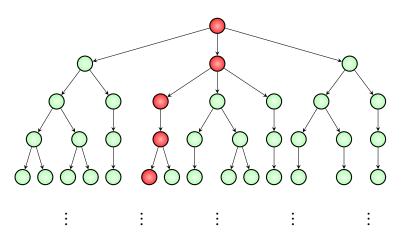
 α_1, α_2 : Path formulae



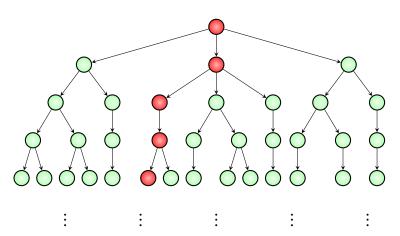
$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid$$



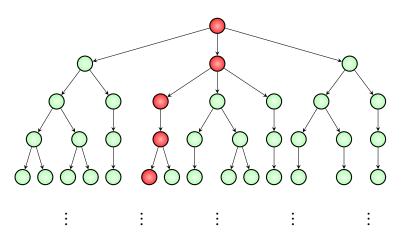
$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid$$



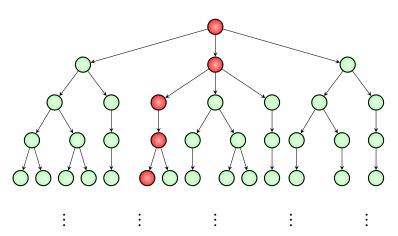
$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid$$



$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid$$

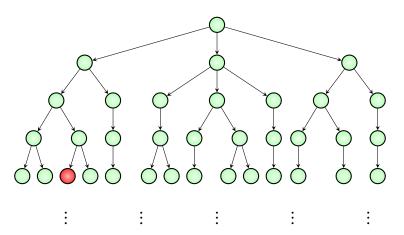


$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$



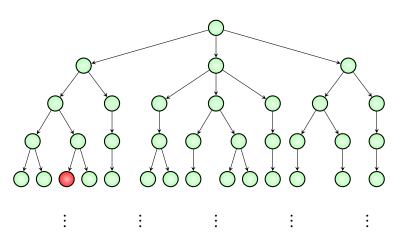
$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae



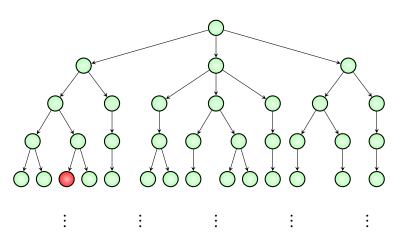
$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha |$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula



$$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula



CTL*

State formulae

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

CTL*

State formulae

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

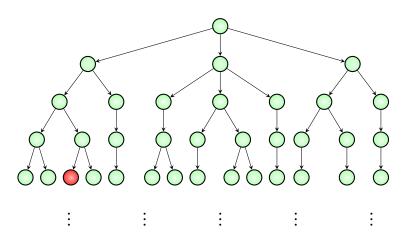
Path formulae

$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

 ϕ : State formula α_1, α_2 : Path formulae

Examples: $E F p_1$, $A F A G p_1$, $A F G p_2$, $A p_1$, $A E p_1$

When does a state in a tree satisfy a state formula?



$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Every state satisfies *true*

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi_1 \ | \ E \ \alpha \ | \ A \ \alpha$$

$$p_i \in AP \qquad \phi_1, \phi_2 : \text{State formulae} \qquad \alpha : \text{Path formula}$$

- **Every state** satisfies *true*
- ▶ State satisfies p_i if its label contains p_i

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

- ► Every state satisfies *true*
- ► State satisfies p_i if its label contains p_i
- ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

- **Every state** satisfies *true*
- ▶ State satisfies p_i if its label contains p_i
- ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2
- State satisfies $\neg \phi$ if it does not satisfy ϕ

$$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

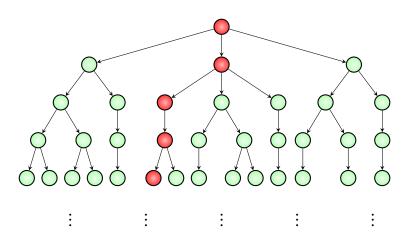
- ► Every state satisfies *true*
- ▶ State satisfies p_i if its label contains p_i
- ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2
- State satisfies $\neg \phi$ if it does not satisfy ϕ
- State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi_1 \ | \ E \ \alpha \ | \ A \ \alpha$$

$$p_i \in AP \qquad \phi_1, \phi_2 : \text{State formulae} \qquad \alpha : \text{Path formula}$$

- **Every state** satisfies *true*
- ▶ State satisfies p_i if its label contains p_i
- State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2
- State satisfies $\neg \phi$ if it does not satisfy ϕ
- State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α
- State satisfies A α if all paths starting from the state satisfy α

When does a path in a tree satisfy a path formula?



Path formulae

$$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

 ϕ : State formula α_1, α_2 : Path formulae

Path formulae

$$\alpha := \phi \mid \, \alpha_1 \, \wedge \, \alpha_2 \, \mid \neg \alpha_1 \mid \, X \, \alpha_1 \, \mid \, \, \alpha_1 \, U \, \alpha_2 \mid F \, \alpha_1 \mid G \, \alpha_1$$

 ϕ : State formula α_1, α_2 : Path formulae

Path satisfies ϕ if the **initial state** of the path satisfies ϕ

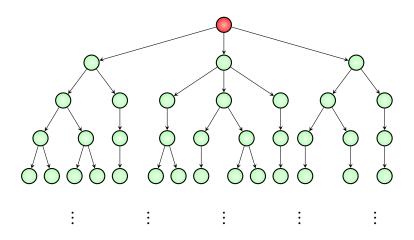
Path formulae

$$\alpha := \phi \mid \ \alpha_1 \ \land \ \alpha_2 \ \mid \neg \alpha_1 \mid \ X \ \alpha_1 \ \mid \ \alpha_1 \ U \ \alpha_2 \mid F \ \alpha_1 \mid G \ \alpha_1$$

 ϕ : State formula α_1, α_2 : Path formulae

- **Path** satisfies ϕ if the **initial state** of the path satisfies ϕ
- Rest standard semantics like LTL

A tree satisfies state formula ϕ if its root satisfies ϕ



▶ **E** F p_1 : Exists a path where p_1 is true sometime

- ▶ **E F** p_1 : Exists a path where p_1 is true sometime
- \triangleright **A F A G** p_1 :

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$

- ▶ **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where **A G** p_1 is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ► **A F G** *p*₂: In all paths, there exists a state from which *p*₂ is true forever

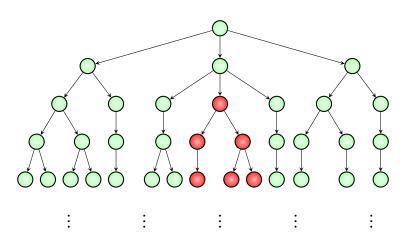
- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever
- **► A** *p*₁:

- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright A F A G p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever
- **► A** *p*₁:
 - ightharpoonup All paths satisfy p_1

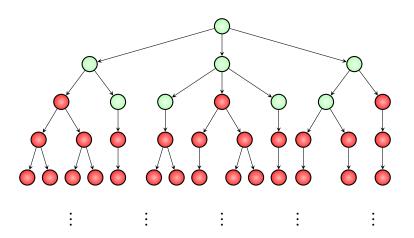
- **E** F p_1 : Exists a path where p_1 is true sometime
- \triangleright **A F A G** p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever
- **► A** *p*₁:
 - ightharpoonup All paths satisfy p_1
 - All paths start with p_1

- ▶ **E** \mathbf{F} p_1 : Exists a path where p_1 is true sometime
- \triangleright **A F A G** p_1 :
 - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true
 - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$
 - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁
- ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever
- **► A** *p*₁:
 - ightharpoonup All paths satisfy p_1
 - ▶ All paths start with p_1
 - \triangleright Same as p_1 !

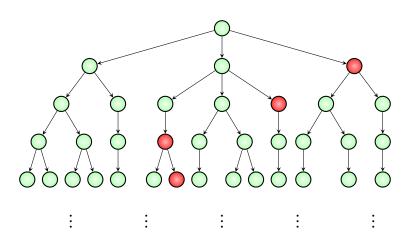
EFAG (red)



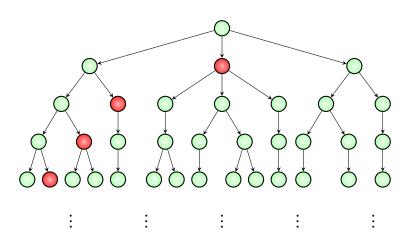
A F A G (red)



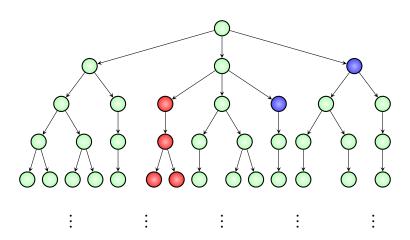
EGEX (red)



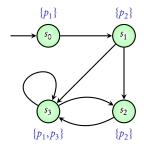
EGEX (red)



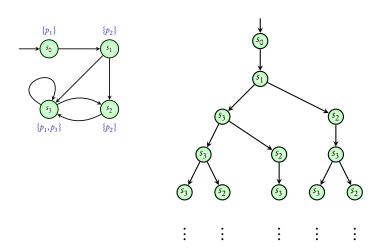
E (E X blue) U (A G red)



When does a transition system satisfy a CTL* formula?



Transition system satisfies CTL* formula ϕ if its computation tree satisfies ϕ



Can LTL properties be written using CTL*?

Transition System (TS) satisfies LTL formula ϕ if

 $Traces(TS) \subseteq Words(\phi)$

Transition System (TS) satisfies LTL formula ϕ if

$$Traces(TS) \subseteq Words(\phi)$$

All paths in the computation tree of TS satisfy path formula ϕ

Transition System (TS) satisfies LTL formula ϕ if

$$Traces(TS) \subseteq Words(\phi)$$

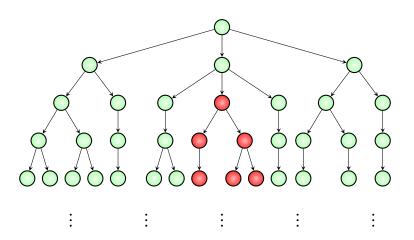
All paths in the computation tree of TS satisfy path formula ϕ

Equivalent CTL* formula: A ϕ

Can CTL* properties be written using LTL?

Answer: No

EFAG (red)



Cannot be expressed in LTL

Summary

CTL*

Syntax and semantics

State formulae, Path formulae

LTL properties \subseteq CTL* properties

Module 3: CTL

In this module...

Restrict to a subset of CTL* which has efficient model-checking algorithms

CTL*

State formulae

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := X \phi_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \alpha_1 \mid G \alpha_1$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \alpha_1$$

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

CTL

State formulae

$$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Legal CTL formulae

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$

Legal CTL formulae

 $E F p_1$

$$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Legal CTL formulae

 EFp_1

 $EFAGp_1$

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

 $\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$

Legal CTL formulae

 EFp_1

 $EFAGp_1$

 $A X p_2$

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

 $\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$

Legal CTL formulae

 EFp_1

 $EFAGp_1$

AX p_2

 $\mathrm{AF}\,p_1\ \wedge\ \mathrm{AG}\,p_2$

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

 $\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$

Legal CTL formulae

 EFp_1

 $EFAGp_1$

A X p_2

 ${\rm AF}\,p_1\ \wedge\ {\rm AG}\,p_2$

Illegal CTL formulae

AFG p_1

$$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha :=$$

$$X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Legal CTL formulae

 $E F p_1$

 $EFAGp_1$

AX p_2

 $\mathrm{AF}\,p_1\ \wedge\ \mathrm{AG}\,p_2$

Illegal CTL formulae

AFG p_1

A p_1

$$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Legal CTL formulae

 $E F p_1$

 $EFAGp_1$

 $A X p_2$

 $AFp_1 \wedge AGp_2$

Illegal CTL formulae

AFG p_1

A p_1

 $EGFp_1$

$$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$

Legal CTL formulae

 $E F p_1$

 $EFAGp_1$

AX p_2

 $AFp_1 \land AGp_2$

Illegal CTL formulae

AFG p_1

A p_1

 $EGFp_1$

A (F $p_1 \wedge G p_2$)

$$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$

Legal CTL formulae

 $E F p_1$

 $EFAGp_1$

AX p_2

 $AFp_1 \wedge AGp_2$

 $A(p_1 U(EGp_2))$

Illegal CTL formulae

AFG p_1

A p_1

 $EGFp_1$

A (F $p_1 \wedge G p_2$)

$$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$

Legal CTL formulae

 $E F p_1$

 $EFAGp_1$

AX p_2

 $AFp_1 \wedge AGp_2$

 $A(p_1 U(EGp_2))$

Illegal CTL formulae

AFG p_1

A p_1

 $EGFp_1$

A (F $p_1 \wedge G p_2$)

 $A(p_1 U(Gp_2))$

$$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

Path formulae

$$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Legal CTL formulae

$$EF p_1$$

$$EFAG p_1$$

$$A X p_2$$

$$A F p_1 \wedge A G p_2$$

$$A(p_1 U(EGp_2))$$

Illegal CTL formulae

AFG
$$p_1$$

A
$$p_1$$

$$EGFp_1$$

A (F
$$p_1 \wedge G p_2$$
)

$$A(p_1 U(Gp_2))$$

Every temporal operator X, U, F, G has a corresponding A or E

CTL

Syntax: Restricted form of CTL*

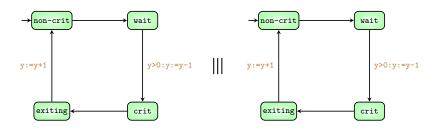
Semantics: Same as seen in CTL*

Example

Atomic propositions AP = { p_1, p_2, p_3, p_4 }

 p_1 : pr1.location=crit p_2 : pr1.location=wait

 p_3 : pr2.location=crit p_4 : pr2.location=wait



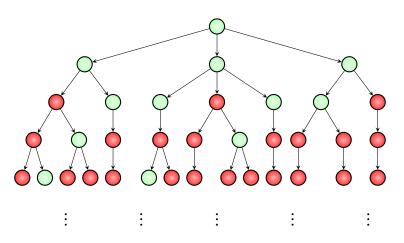
Mutual exclusion: A G \neg ($p_1 \land p_3$)

Answer: No

Answer: No

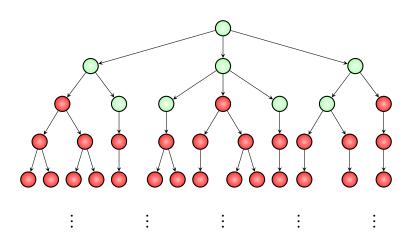
Property A F G p_1 cannot be expressed in CTL

A F G (red)

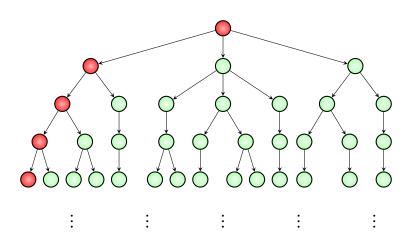


In all paths, eventually red is true forever

A F A G (red)



A F E G (red)

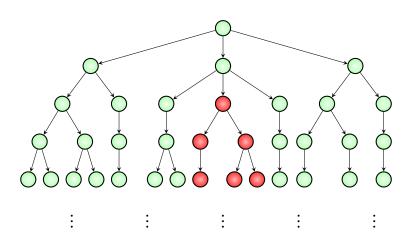


Answer: No

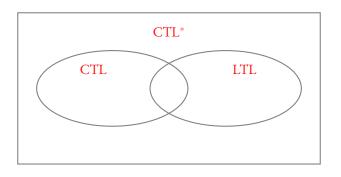
Property A F G p_1 cannot be expressed in CTL

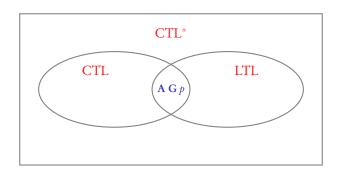
Answer: No

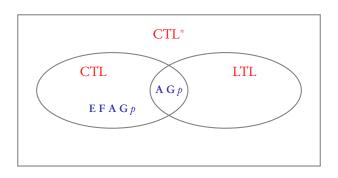
EFAG (red)

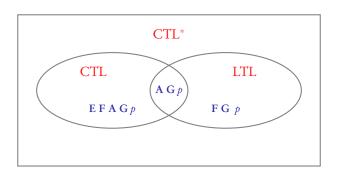


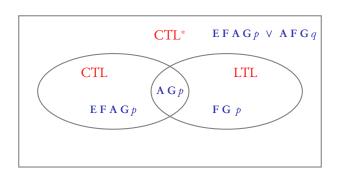
Cannot be expressed in LTL











Summary

CTL

Subset of CTL*

Paired temporal and A-E operators

Expressive powers