Computation Tree Logic B. Srivathsan Chennai Mathematical Institute Model Checking and Systems Verification January - April 2016 # Module 1: # Tree behaviour of a transition system **Transition System** **Transition System** **Transition System** Traces $$\{p_1\}\{p_2\}\{p_1,p_3\}\{p_1,p_3\}\{p_1,p_3\}\{p_1,p_3\}\dots$$ $\{p_1\}\{p_2\}\{p_2\}\{p_1,p_3\}\{p_2\}\{p_1,p_3\}\{p_2\}\{p_1,p_3\}\dots$ # In this unit A tree view of the transition system ... # In this unit A tree view of the transition system obtained by repeatedly unfolding it # Computation tree # LTL talks about properties of paths #### LTL talks about properties of paths Coming next: Properties of trees #### Exists a path satisfying F(red) # Exists a path satisfying G(red) # Exists a path satisfying X(red) # Exists a path satisfying blue U red # Properties of trees Type 1: Exists a path satisfying LTL formula ϕ # Properties of trees Type 1: Exists a path satisfying LTL formula ϕ E operator: $\mathbf{E} \phi$ #### Exists a path satisfying F(red): E F(red) # Exists a path satisfying G(red): E G(red) # Exists a path satisfying X(red): EX(red) #### Exists a path satisfying blue U red: E (blue U red) # All paths satisfy F(red) # All paths satisfy G(red) # All paths satisfy X(red) # All paths satisfy blue U red # Properties of trees Type 2: All paths satisfy LTL formula ϕ # Properties of trees Type 2: All paths satisfy LTL formula ϕ A operator: $\mathbf{A} \phi$ #### All paths satisfy F(red): A F(red) ## All paths satisfy G(red): A G(red) ## All paths satisfy X(red): A X(red) ## All paths satisfy blue U red: A blue U red # Properties of trees **Exists a path** satisfying path property ϕ : **E** ϕ • All paths satisfy path property ϕ : A ϕ # Properties of trees **Exists a path** satisfying path property ϕ : **E** ϕ ► All paths satisfy path property ϕ : A ϕ Coming next: Mixing A and E ## Recall... Exists a path satisfying F(red): E F(red) ## Recall... All paths satisfy G(red): A G(red) ## EFAG (red) ## A F A G (red) ## Recall... Exists a path satisfying G(red): E G(red) ## Recall... Exists a path satisfying X(red): EX(red) ## EGEX (red) ## EGEX (red) ## E (E X blue) U (A G red) # Summary ## Transition system as a tree Computation tree E and A operators # Module 2: CTL* # Recap - ▶ Path formulae - Express properties of paths - ▶ LTL - ► Properties on trees - ► A and E operators - Mixing A and E # Recap - ▶ Path formulae - Express properties of paths - ► LTL - ► Properties on trees - ► A and E operators - ► Mixing A and E Coming next: A logic for expressing properties on trees $$\phi :=$$ $$\phi := \text{true} \mid$$ $$\phi := \text{true} \mid p_i \mid$$ $p_i \in AP$ $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 |$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae $\alpha :=$ $$\alpha := \phi$$ ϕ : State formula $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid$$ ϕ : State formula α_1, α_2 : Path formulae $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid$$ $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid$$ $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid$$ $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid$$ $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha |$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula $$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula ## CTL* #### State formulae $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula #### Path formulae $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ ## CTL* #### State formulae $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula #### Path formulae $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ ϕ : State formula α_1, α_2 : Path formulae **Examples:** $E F p_1$, $A F A G p_1$, $A F G p_2$, $A p_1$, $A E p_1$ #### When does a state in a tree satisfy a state formula? $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula **Every state** satisfies *true* $$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi_1 \ | \ E \ \alpha \ | \ A \ \alpha$$ $$p_i \in AP \qquad \phi_1, \phi_2 : \text{State formulae} \qquad \alpha : \text{Path formula}$$ - **Every state** satisfies *true* - ▶ State satisfies p_i if its label contains p_i $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula - ► Every state satisfies *true* - ► State satisfies p_i if its label contains p_i - ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula - **Every state** satisfies *true* - ▶ State satisfies p_i if its label contains p_i - ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 - State satisfies $\neg \phi$ if it does not satisfy ϕ $$\phi := \text{ true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula - ► Every state satisfies *true* - ▶ State satisfies p_i if its label contains p_i - ► State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 - State satisfies $\neg \phi$ if it does not satisfy ϕ - State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α $$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi_1 \ | \ E \ \alpha \ | \ A \ \alpha$$ $$p_i \in AP \qquad \phi_1, \phi_2 : \text{State formulae} \qquad \alpha : \text{Path formula}$$ - **Every state** satisfies *true* - ▶ State satisfies p_i if its label contains p_i - State satisfies $\phi_1 \wedge \phi_2$ if it satisfies both ϕ_1 and ϕ_2 - State satisfies $\neg \phi$ if it does not satisfy ϕ - State satisfies $\mathbf{E} \alpha$ if there **exists a path** starting from the state satisfying α - State satisfies A α if all paths starting from the state satisfy α ## When does a path in a tree satisfy a path formula? #### Path formulae $$\alpha := \phi \mid \alpha_1 \wedge \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ ϕ : State formula α_1, α_2 : Path formulae #### Path formulae $$\alpha := \phi \mid \, \alpha_1 \, \wedge \, \alpha_2 \, \mid \neg \alpha_1 \mid \, X \, \alpha_1 \, \mid \, \, \alpha_1 \, U \, \alpha_2 \mid F \, \alpha_1 \mid G \, \alpha_1$$ ϕ : State formula α_1, α_2 : Path formulae **Path** satisfies ϕ if the **initial state** of the path satisfies ϕ #### Path formulae $$\alpha := \phi \mid \ \alpha_1 \ \land \ \alpha_2 \ \mid \neg \alpha_1 \mid \ X \ \alpha_1 \ \mid \ \alpha_1 \ U \ \alpha_2 \mid F \ \alpha_1 \mid G \ \alpha_1$$ ϕ : State formula α_1, α_2 : Path formulae - **Path** satisfies ϕ if the **initial state** of the path satisfies ϕ - Rest standard semantics like LTL ## A tree satisfies state formula ϕ if its root satisfies ϕ ▶ **E** F p_1 : Exists a path where p_1 is true sometime - ▶ **E F** p_1 : Exists a path where p_1 is true sometime - \triangleright **A F A G** p_1 : - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ▶ **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where **A G** p_1 is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ► **A F G** *p*₂: In all paths, there exists a state from which *p*₂ is true forever - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever - **► A** *p*₁: - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright A F A G p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever - **► A** *p*₁: - ightharpoonup All paths satisfy p_1 - **E** F p_1 : Exists a path where p_1 is true sometime - \triangleright **A F A G** p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever - **► A** *p*₁: - ightharpoonup All paths satisfy p_1 - All paths start with p_1 - ▶ **E** \mathbf{F} p_1 : Exists a path where p_1 is true sometime - \triangleright **A F A G** p_1 : - ▶ In all paths, there exists a state where $\mathbf{A} \mathbf{G} p_1$ is true - ▶ In all paths, there exists a state from which all paths satisfy $\mathbf{G} p_1$ - ► In all paths, there exists a state such that every state in the subtree below it contains *p*₁ - ▶ **A F G** p_2 : In all paths, there exists a state from which p_2 is true forever - **► A** *p*₁: - ightharpoonup All paths satisfy p_1 - ▶ All paths start with p_1 - \triangleright Same as p_1 ! ## EFAG (red) ## A F A G (red) ## EGEX (red) ## EGEX (red) ## E (E X blue) U (A G red) ## When does a transition system satisfy a CTL* formula? # **Transition system** satisfies CTL* formula ϕ if its computation tree satisfies ϕ # Can LTL properties be written using CTL*? ## Transition System (TS) satisfies LTL formula ϕ if $Traces(TS) \subseteq Words(\phi)$ ## Transition System (TS) satisfies LTL formula ϕ if $$Traces(TS) \subseteq Words(\phi)$$ All paths in the computation tree of TS satisfy path formula ϕ ## Transition System (TS) satisfies LTL formula ϕ if $$Traces(TS) \subseteq Words(\phi)$$ All paths in the computation tree of TS satisfy path formula ϕ Equivalent CTL* formula: A ϕ # Can CTL* properties be written using LTL? Answer: No # EFAG (red) # Cannot be expressed in LTL # Summary # CTL* Syntax and semantics State formulae, Path formulae LTL properties \subseteq CTL* properties # Module 3: CTL # In this module... Restrict to a subset of CTL* which has efficient model-checking algorithms # CTL* ## State formulae $$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := \phi \mid \alpha_1 \land \alpha_2 \mid \neg \alpha_1 \mid X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := X \alpha_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := X \phi_1 \mid \alpha_1 U \alpha_2 \mid F \alpha_1 \mid G \alpha_1$$ $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \alpha_1 \mid G \alpha_1$$ $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \alpha_1$$ $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$ # CTL ### State formulae $$\phi := \text{ true } | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$ $$p_i \in AP$$ ϕ_1, ϕ_2 : State formulae α : Path formula ## Path formulae $$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$ $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$ # Legal CTL formulae $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$ # Legal CTL formulae $E F p_1$ $$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$ # Legal CTL formulae EFp_1 $EFAGp_1$ $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$ # Legal CTL formulae EFp_1 $EFAGp_1$ $A X p_2$ $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$ ## Legal CTL formulae EFp_1 $EFAGp_1$ AX p_2 $\mathrm{AF}\,p_1\ \wedge\ \mathrm{AG}\,p_2$ $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$ # Legal CTL formulae EFp_1 $EFAGp_1$ A X p_2 ${\rm AF}\,p_1\ \wedge\ {\rm AG}\,p_2$ # Illegal CTL formulae AFG p_1 $$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha :=$$ $$X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$ # Legal CTL formulae $E F p_1$ $EFAGp_1$ AX p_2 $\mathrm{AF}\,p_1\ \wedge\ \mathrm{AG}\,p_2$ # Illegal CTL formulae AFG p_1 A p_1 $$\phi := \text{true} \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$ # Legal CTL formulae $E F p_1$ $EFAGp_1$ $A X p_2$ $AFp_1 \wedge AGp_2$ # Illegal CTL formulae AFG p_1 A p_1 $EGFp_1$ $$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$ ## Legal CTL formulae $E F p_1$ $EFAGp_1$ AX p_2 $AFp_1 \land AGp_2$ # Illegal CTL formulae AFG p_1 A p_1 $EGFp_1$ A (F $p_1 \wedge G p_2$) $$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$ # Legal CTL formulae $E F p_1$ $EFAGp_1$ AX p_2 $AFp_1 \wedge AGp_2$ $A(p_1 U(EGp_2))$ # Illegal CTL formulae AFG p_1 A p_1 $EGFp_1$ A (F $p_1 \wedge G p_2$) $$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := X \phi_1 | \phi_1 U \phi_2 | F \phi_1 | G \phi_1$$ ## Legal CTL formulae $E F p_1$ $EFAGp_1$ AX p_2 $AFp_1 \wedge AGp_2$ $A(p_1 U(EGp_2))$ # Illegal CTL formulae AFG p_1 A p_1 $EGFp_1$ A (F $p_1 \wedge G p_2$) $A(p_1 U(Gp_2))$ $$\phi := \text{true} \mid p_i \mid \phi_1 \wedge \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$ #### Path formulae $$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$ ## Legal CTL formulae $$EF p_1$$ $$EFAG p_1$$ $$A X p_2$$ $$A F p_1 \wedge A G p_2$$ $$A(p_1 U(EGp_2))$$ # Illegal CTL formulae AFG $$p_1$$ A $$p_1$$ $$EGFp_1$$ A (F $$p_1 \wedge G p_2$$) $$A(p_1 U(Gp_2))$$ Every temporal operator X, U, F, G has a corresponding A or E # CTL Syntax: Restricted form of CTL* Semantics: Same as seen in CTL* # Example Atomic propositions AP = { p_1, p_2, p_3, p_4 } p_1 : pr1.location=crit p_2 : pr1.location=wait p_3 : pr2.location=crit p_4 : pr2.location=wait **Mutual exclusion:** A G \neg ($p_1 \land p_3$) Answer: No Answer: No **Property A F G** p_1 cannot be expressed in CTL # A F G (red) In all paths, eventually red is true forever # A F A G (red) # A F E G (red) Answer: No **Property A F G** p_1 cannot be expressed in CTL Answer: No # EFAG (red) # Cannot be expressed in LTL # Summary # **CTL** Subset of CTL* Paired temporal and A-E operators Expressive powers