Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 1:
Road Map

Model

_,[

_,[

{tpi} () lror}
request=1 request=1
ready busy
request=0 request=0
ready busy
{ {r}

N

Requirements

NuSMV

© o

(@)
o)

3/9

Model

{p}

N

0 2528

request=1
ready

—

request=1
busy

request=0
busy

{§

request=0
ready
U ~— —

{rt

Requirements

NuSMV

© o

@
s

Question 1: What are the algorithms used for checking requirements on
transition systems?

3/9

Coming next: A major challenge in designing
model-checking algorithms

Recall...

~§—@ I —E_®

|States|: 72 7,

Sl TS,

Number of states in the interleaving

n, - n,

6/9

|States|: 72 n, n n,

S, M T8 I - TS e Il TS,

Number of states in the interleaving

7’11.712.... nnk

1

If there are 10 TS each with 10 states, interleaving would have 10'° states!

6/9

|States|: 72 7, n n,

S, M T8 I - TS e Il TS,

Number of states in the interleaving

7’11.7’12.... 7’Z7’l/e

1

If there are 10 TS each with 10 states, interleaving would have 10'° states!

State-space explosion

6/9

NuSMV can handle more than 10'%° states

o
7/9

NuSMV can handle more than 10'%° states

Question 2: How does NuSMV tackle state-space explosion?

Questions

Question 1: What are the algorithms used for checking requirements on
transition systems?

Question 2: How does NuSMV tackle state-space explosion?

Course plan

Transition Systems
+ G, F, X, GF
+ NuSMV

| | | | |

i e
Automata Biichi LTL CTL tate: sl?ace

Automata explosion
Unit: 4 Unit: 5,6 Unit: 7,8 Unit: 9 Unit: 10

9/9

Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2:

A gentle introduction to
automata

{r} Q{Pwﬁz}

request=1 request=1
ready busy

Tequest=0 Tequest=0
ready busy

HU U{Pz}

AP = set of atomic propositions

AP-INF = set of infinite words over PowerSet(AP)

A property over AP is a subset of AP-INF

3/26

Goal: Need finite descriptions of properties

4/26

Goal: Need finite descriptions of properties

Here: Finite state automata to describe sets of words

4/26

Goal: Need finite descriptions of properties

Here: Finite state automata to describe sets of finite words

4/26

Alphabet: { 4,5}

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Design a TS with actions { 4, } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Design a TS with actions { 4, } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Design a TS with actions { 4, } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

O—®

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Design a TS with actions { 4, } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

@@

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Design a TS with actions { 4, } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Design a TS with actions { 4, } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

Alphabet: { 4,5}

L, = {ab, abab, ababab, ...}

Design a TS with actions { 4, } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

Alphabet: { 4,5}

L, = {a, aa, ab, aaa, aab, aba, abb, ...}

L, is the set of all words starting with 2

6/26

Alphabet: { 4,5}

L, = {a, aa, ab, aaa, aab, aba, abb, ...}

L, is the set of all words starting with 2

Design a TS with actions { 4,5 } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

6/26

Alphabet: { 4,5}

L, = {a, aa, ab, aaa, aab, aba, abb, ...}

L, is the set of all words starting with a

Design a TS with actions { 4,5 } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

@——@)

6/26

Alphabet: { 4,5}

L, = {a, aa, ab, aaa, aab, aba, abb, ...}

L, is the set of all words starting with 2

Design a TS with actions { 4,5 } and mark some states as accepting so that

the set of all paths from an initial state to an accepting state equals L,

@——@)

b Finite Automaton

6/26

Coming next: Some terminology

7/26

Alphabet ¥ ={a, b}

Alphabet ¥ ={a, b}

Yy.-¥ ={a b} {a b}

Alphabet ¥ ={a, b}

Y. ¥ ={a b} -{a b}
={ aa, ab, ba, bb}

Alphabet ¥ ={g4, b}

Yy~ ={a b} -{ab}
={ aa, ab, ba, bb}

8/26

Alphabet

y .

r

>

{a b}

{“ab} : {“’b}
{ aa, ab, ba, bb}

ds of length 3

8/26

Alphabet ¥ ={g4, b}

Yy ¥ ={a b} {a b}
={ aa, ab, ba, bb }

ds of length 3

of length &

8/26

Alphabet ¥ ={a, b}

Y. ¥ ={a b} -{a b}
={ aa, ab, ba, bb}

0 = { ¢} (empty word, with length 0)

aba-¢ = aba 5! = words of length 1

¢-bbb = bbb 52 = words of length 2
we =w ¥? = words of length 3
€Ew =w

yk = words of length

aba - €

¢ - bbb

w- €

y .

Alphabet
aba

bbb

w

w

>

>

ST

= { ¢ | (empty word, with length 0)

{a b}

{a, b} - {a, b}
{ aa, ab, ba, bb }

= words of length 1

= words of length 2

= words of length 3

= words of length k

. Uizozi

set of all finite length words

8/26

¥* = set of all words over ¥

9/26

¥* = set of all words over ¥

Any set of words is called a language

9/26

¥* = set of all words over ¥

Any set of words is called a language

{ ab, abab, ababab, ...}
words starting with an a
words starting with a b
{ € b, bb, bbb, ...}

{ €, ab, abab, ababab, ...}

{ €, bbb, bbbbbb, (bbb)*, ...}
words starting and ending with an a

{ ¢, ab, aabb, aaabbb,a*b* ...}

¥* = set of all words over ¥

Any set of words is called a language

{ ab, abab, ababab, ...}
ay" words starting with an a
words starting with a b
{ € b, bb, bbb, ...}
{ €, ab, abab, ababab, ...}
{ €, bbb, bbbbbb, (bbb)*, ...}
words starting and ending with an a

{ ¢, ab, aabb, aaabbb,a*b* ...}

¥* = set of all words over ¥

Any set of words is called a language

{ ab, abab, ababab, ...}
ay" words starting with an a
by* words starting with a b
{ € b, bb, bbb, ...}
{ €, ab, abab, ababab, ...}
{ €, bbb, bbbbbb, (bbb)*, ...}
words starting and ending with an a

{ ¢, ab, aabb, aaabbb,a*b* ...}

¥* = set of all words over ¥

Any set of words is called a language

{ ab, abab, ababab, ...}
ay" words starting with an a
by* words starting with a b
b* { € b, bb, bbb, ...}
{ €, ab, abab, ababab, ...}
{ €, bbb, bbbbbb, (bbb)*, ...}
words starting and ending with an a

{ ¢, ab, aabb, aaabbb,a*b* ...}

¥* = set of all words over ¥

Any set of words is called a language

{ ab, abab, ababab, ...}

ay" words starting with an a
by words starting with a b
b+ {e b, bb, bbb, ...}
(ab)" { €, ab, abab, ababab, ...}
{ €, bbb, bbbbbb, (bbb)*, ...}
words starting and ending with an a

{ ¢, ab, aabb, aaabbb,a*b* ...}

¥* = set of all words over ¥

Any set of words is called a language

{ ab, abab, ababab, ...}
ay" words starting with an a
by words starting with a b
b* { € b, bb, bbb, ...}
ab)" { €, ab, abab, ababab, ...}
(bbb)* { €, bbb, bbbbbb, (bbb)’, ...}

words starting and ending with an a

{ ¢, ab, aabb, aaabbb,a*b* ...}

¥* = set of all words over ¥

Any set of words is called a language

{ ab, abab, ababab, ...}
ay" words starting with an a
by words starting with a b
b* { € b, bb, bbb, ...}
ab)" { €, ab, abab, ababab, ...}
(bbb)* { €, bbb, bbbbbb, (bbb)’, ...}

a¥*a words starting and ending with an 4

{ ¢, ab, aabb, aaabbb,a*b* ...}

In this module...

Task: Design Finite Automata for some languages

11/26

Alphabet: {4,b}

L, = {ab, abab, ababab, ...}

Design a Finite automaton for L,

Alphabet: { 4,0}

Ly = { ¢, ab, abab, ababab, ...}

Design a Finite automaton for L,

Alphabet: { 4,5}

Y = {¢, a, b, aa, ab, ba, bb ...}

Design a Finite automaton for ©*

a,b

14/26

Alphabet: { 4,5}

a* = {e, a, aa, aaa, aaaa, @, ...}
a* is the set of all words having only 4

Design a Finite automaton for 4*

15/26

Alphabet: { 4,5}

a* = {e, a, aa, aaa, aaaa, @, ...}
a* is the set of all words having only 4

Design a Finite automaton for 4*

15/26

Alphabet: { 4,5}

a* = {e, a, aa, aaa, aaaa, @, ...}
a* is the set of all words having only 4

Design a Finite automaton for 4*

Non-deterministic automaton

15/26

Transition Systems

16/26

Transition Systems

16/26

Alphabet: { 4,5}

ab* = {a, ab, ab?, ab’, ab*, ...}

Design a Finite automaton for ab*

Alphabet: { 4,5}

ab* = {a, ab, ab?, ab’, ab*, ...}

Design a Finite automaton for ab*

b

Alphabet: { 4,5}

ab* = {a, ab, ab?, ab’, ab*, ...}

Design a Finite automaton for ab*

b
a
Non-deterministic automaton

17/26

Alphabet: { 4,0}

ab* = {a, ab, ab?, ab’, ab*, ...}

ba* = {b, ba, ba®, ba’, ba*, ...}

Design a Finite automaton for ab* U ba*

Alphabet: { 4,0}

ab* = {a, ab, ab?, ab’, ab*, ...}

ba* = {b, ba, ba®, ba’, ba*, ...}

Design a Finite automaton for ab* U ba*

Alphabet: { 4,0}

ab* = {a, ab, ab?, ab’, ab*, ...}

ba* = {b, ba, ba®, ba’, ba*, ...}

Design a Finite automaton for ab* U ba*

Non-deterministic automaton

18/26

Alphabet: { 4,5}

ab* = {a, ab, ab?, ab’, ab*, ...}

ba* = {b, ba, ba®, ba®, ba*, ...}

Design a Finite automaton for ab* U ba*

Alphabet: { 4,5}

ab* = {a, ab, ab?, ab’, ab*, ...}

ba* = {b, ba, ba®, ba®, ba*, ...}

Design a Finite automaton for ab* U ba*

®

®

Alphabet: { 4,5}

ab* = {a, ab, ab?, ab’, ab*, ...}

ba* = {b, ba, ba®, ba®, ba*, ...}

Design a Finite automaton for ab* U ba*
g

b
a

Multiple initial states: non-deterministic automaton

What is the language of the following automaton?

a,b

0@

What is the language of the following automaton?

a,b

0@

Answer: a Y*a

words starting and ending with a

20/26

What is the language of the following automaton?

a,b

a,b
H————®

What is the language of the following automaton?

Answer: Yab ¥*

words containing ab

21/26

What is the language of the following automaton?

What is the language of the following automaton?

a,b a,b a,b
O

Answer: Y'a Y b ¥*

words where there exists an a followed by a b after sometime

22/26

What is the language of the following automaton?

Nyl

o
I3

a,b, b a,b,
C

B

| S N

What is the language of the following automaton?

ﬂ,b, ﬂbC

b
OO

o

Answer: T'a b ¢ (X = {a, b, c})

words where there exists an a followed by only b’s and after sometime a ¢ occurs

23/26

Alphabet: { 4,5}

L = { ¢, ab, aabb, aaabbb, ..., a'lV, ...}

Can we design a Finite automaton for L?

Alphabet: { 4,5}

L = { ¢, ab, aabb, aaabbb, ..., a'lV, ...}

Can we design a Finite automaton for L?

Need infinitely many states to remember the number of 4’s

24/26

Alphabet: { 4,5}

L = { ¢, ab, aabb, aaabbb, ..., a'lV, ...}

Can we design a Finite automaton for L?

Need infinitely many states to remember the number of 4’s

Cannot construct finite automaton for this language

24/26

Regular languages

Languages
Regular languages
¥ a*, ab*, etc.

{a"b" | n>0}

A language is called regular if it can be accepted by a finite
automaton

25/26

26/26

26/26

Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 3:

Simple properties of finite
automata

; ; d . .
(]o/ @ Non-deterministic automaton

Y*a: words ending with an 4

4/25

; ; d . .
(]o/ @ Non-deterministic automaton

Y*a: words ending with an 4

\‘]o/ @ Non-deterministic automaton

Y*a : words ending with an «

:{%"]1}

4/25

\‘]oj @ Non-deterministic automaton

Y*a : words ending with an «

(200

4/25

\‘]oj @ Non-deterministic automaton

Y*a : words ending with an «

(200

4/25

\‘]oj @ Non-deterministic automaton

Y*a : words ending with an «

(200

4/25

\‘]oj @ Non-deterministic automaton

Y*a : words ending with an «

(200

4/25

(]o/ @ Non-deterministic automaton

Y*a : words ending with an «

‘ {90,9,} Deterministic automaton

a,b

Qﬂfq\”@

| 57 N

Y*a ¥ : words where the second last letter is a

NFA

;: a,b
70 —2—>(a1) (2) NFA

Y*a ¥ : words where the second last letter is a

Y*a ¥ : words where the second last letter is a

{90, a1}

NFA

;: a,b
70 —2—>(a1) (2) NFA

{9091}

;: a,b
70 —2—>(a1) (2) NFA

{9091}

a

‘{%»41"12}

NFA

{‘10)92} ‘{%»41"12}

NFA

{90,902} {90:91,92} a

Q a,b
70 —2—>(a1) (2) NFA

{9091}

a

{90,902} {90:91,92} a

NFA

{9022}

;: a,b
70 —2—>(a1) (2) NFA

;: a,b
70 —2—>(a1) (2) NFA

Y*a ¥ : words where the second last letter is a

{a0} 2 {9001} DFA

{‘Io:a {90:91,92} a

NFA

a* U b*: words of the form &', /', or €

NFA

a* U b*: words of the form &', /', or €

{90,911}

NFA

a* U b*: words of the form &', /', or €

—lg0 2| 190})

‘&

b
NFA

a* U b*: words of the form &', /', or €

_’[[{%a%ﬂ {40}

N—

Q
Nyl
)

‘&

b
NFA

a* U b*: words of the form &', /', or €

D&

_’[[{%a%ﬂ {40}

N—

Q
Nyl
)

‘&

b
NFA

a* U b*: words of the form &', /', or €

0
(7N ==(N!

b

IS

11

‘&

b
NFA

a* U b*: words of the form &', /', or €

a 6 b
|l)—{ 1z} }—{ {})
b
b
Q

a b
a* U b*: words of the form &', /', or €

a

a Q b
|l)—{ 1z} }—{ {})

a* U b*: words of the form &', /', or €

a Q b O
|l)—{ 1z} }—{ {})

a* U b*: words of the form &', /', or €

a Q b O
~tgoa)} —{ g} }—{ {1) DFA

Subset construction

Every NFA can be converted to an equivalent DFA

@ - @ . {91,929}

a,b

a,b

Y aby*

@)

a,b

Sy
— =

Y by

a,b

oy —o oW

Yraby” Y by

—> (90-20) (41,p0 {92, P0)

"

{q0,11) (91,p1) (92,11)

{40,12) (91,P2) 52

oy —o oW

Yraby” Y by

(41,p0 {92, P0)

!
sLos
;3 Ny

{q0,11) (91,p1) (92,11)

{40,12) (91,P2) 52

—> (90-20)

{40,12)

(41,p0)

(91,p1)

(91,P2)

{92, P0)

(92,11)

52

a

a,b

Sy
— =

Y by

a,b

a,b a,b
Q a ~ b
@0
Y taby*
a,b
—>| (40:70) £
b
{@0£1)
b

a

(91,p1)

(91,P2)

a,b

Sy
— =

Y by

(92,11)

52

a,b

a,b

a,b a,b a,b
@ @ 8 ~b ® b

Y aby* Y bby*
a,b
) —) — e
b
(90-11) (91:11) {@2:11)
b

a b

a,b

a,b a,b a,b
@ @ 8 ~b ® b

Y aby* Y bby*
a,b
) —) — e
b b
(90-11) (91:11) {@2:11)
b

a b

Yraby* S bby*
a,b
a b
—> (90-20) (q1-p0) {92, P0) a,b
b
b b
{q0,11) (91,p1) (92,11)
b

a,b a,b a,b a,b

oy —o oW

Yraby* S bby*
a,b
a b
—> (90-20) (q1-p0) {92, P0) a,b

b b
b b

a b
a, b {q0-12) (q1,2) 52

a,b

a,b

a,b

—> (90-20)

{q

o

b

)

b

a,b {40,12)

a

(41,p0)

b

(91,P2)

b

b

(qZ’pO) ﬂ9b

b

b

52 a,b

Yraby* N £*bby" : words containing both ab and bb

<@ -

)

)

nob*

Synchronous product

Gives the intersection of the two languages

a,b

a,b

Language is empty as there is no accepting state

3/25

b
()
a,b a,b

a
a b
90 @ 92

N

14/25

Language is empty as accepting state is not reachable

14/25

bb*

aa”

— (905 0)

0 , 0
O ®)
aa* bb*
—{{90:0)

Language is empty as there is no accepting state

Question: Given NFA .¢/, is language accepted by .o/ empty?

16/25

Question: Given NFA .¢/, is language accepted by .o/ empty?

Language of an NFA is empty if and only if it has
no reachable accepting states

16/25

Question: Given NFA .¢/, is language accepted by .o/ empty?

Emptiness of NFA

Language of an NFA is empty if and only if it has
no reachable accepting states

Algorithm

Run a depth-first or breadth-first search to find if there is a
path to an accepting state

NFA

a,b

Y*a : words ending with an a

DFA
b a

/ﬂ\
_’ 190,91}

~ —
b

a,b

Y*a : words ending with an a

DFA
b a

/ﬂ\
_’ 190,91}

~ —
b

NFA

a,b

Y*a : words ending with an a

DFA
b a

/ﬂ\
_’ 190,91}

~ —
b

complement of ¥*a

NFA

a,b a,b
a /‘\ a

Y*a : words ending with an a

DFA
b a

/ﬂ\
_’ 190,91}

~ —
b

complement of ¥*a

NFA

a,b a,b
; a ;f\ a
@&——® ©——®
Y*a: words ending with an 4 not the complement!
DFA
b a

/ﬂ\
_’ 190,91}

~ —
b

complement of ¥*a

NFA
a,b

a a,b
—(®) D,

Y*a ¥ : words where the second last letter is 2

DFA
b
48/—\
{190}

90,91, 92}

19/25

NFA
a,b

a a,b
—(®) D,

Y*a ¥ : words where the second last letter is 2

{90, 02} {90,910}

19/25

NFA
a,b

a a,b
—(®) D,

Y*a ¥ : words where the second last letter is 2

190,41, 92}
complement of 2%

19/25

NFA
q,b ﬂ,b

a a,b l ' a a,b
—{(@)——(®) @)

Y*a ¥ : words where the second last letter is 2

DFA
b b
8/_\
{190}

90,91, 92} {90,910}

complement of 2%

19/25

NFA
a,b a,b

a a,b l ' a a,b
—{(@)——(®) @)

Y*a ¥ : words where the second last letter is 2 not the complement!

90,91, 92} {90,910}

complement of 2%

19/25

Complementation

Interchange accepting and non-accepting states in a DFA

Complementation

Interchange accepting and non-accepting states in a DFA

Does not work in the case of NFA

Coming next: Union of two regular languages

21/25

a,b
Gl
®

T bby*

Yraby*

a,b
(o
&

T bby*

Y aby*

Union

Consider the two automata as a single automaton

Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 4:

Safety properties described by
automata

AP-INF = set of infinite words over PowerSet(AP)

P: a property over AP

ANNNNNNNN py Hop,

ANNNNNNNNA Py He- Hopod Bad-Prefixes

P is a safety property if there exists a set Bad-Prefixes such that

P is the set of all words that do not start with a Bad-Prefix

3/17

Property 1: if p, is true, then p, should be true in the next step

ANNANNN { py Hpo} BadPrefixes

4/17

Property 1: if p, is true, then p, should be true in the next step

ANNANNN { py Hpo} BadPrefixes

r={{binbinh e}

4/17

Property 1: if p, is true, then p, should be true in the next step

ANNANNN { py Hpo} BadPrefixes

r={{binbinh e}

p
é{pl},{pl,pz}@ {hin} @

o/

4/17

Property 1: if p, is true, then p, should be true in the next step

ANNANNN { py Hpo} BadPrefixes

r={{binbinh e}

p
é{pl},{pl,pz}@ {hin} @

o/

This BadPrefixes set is a regular language

Property 2: if p, is true, then p, should be true in the next to next step

NN HeHpab “BadPrefixes”

5/17

Property 2: if p, is true, then p, should be true in the next to next step

NN HeHpab “BadPrefixes”

r={{binbinh e}

Property 2: if p, is true, then p, should be true in the next to next step

NN HeHpab “BadPrefixes”

r={{binbinh e}

>
{oi by} > {hin}
@il T g Ui g

Property 2: if p, is true, then p, should be true in the next to next step

NN HeHpab “BadPrefixes”

r={{binbinh e}

>
{oi by} > {hin}
(@ LG S, WLLIN)

This BadPrefixes set is a regular language

Property 3: at any point, the number of times p, has occured should be
less than the number of times p, has occured

6/17

Property 3: at any point, the number of times p, has occured should be
less than the number of times p, has occured

={{hinb {n b {por)

Property 3: at any point, the number of times p, has occured should be
less than the number of times p, has occured

={{hinb {n b {por)

BadPrefixes = words where number of times p; occurs is more than that of p,

6/17

Property 3: at any point, the number of times p, has occured should be
less than the number of times p, has occured

={{hinb {n b {por)

BadPrefixes = words where number of times p; occurs is more than that of p,

This BadPrefixes set is not a regular language

Regular safety properties

A safety property is regular if the associated BadPrefixes set is a regular
language

Invariants are regular safety properties

Property: Always p, is true

AN p L “Bad-Prefixes”

2=}

BadPrefixes set for invariant properties is a regular language

8/17

Coming next: An algorithm to model-check safety properties

Model Safety property

Atomic propositions AP = { p,,p, }

Py request=1 p,: status=busy

ir} O {pupa}
el — e r
_{%{pl},{pl,m}@ {hin} ®

BadPrefixes

request=0 request=0
ready busy

{}U — U

10/17

Model Safety property

Atomic propositions AP = { p,,p, }

Py request=1 p,: status=busy

ir} O {pupa}
el — e r {
{%{pl },{pl,pz}@ {hin} D

BadPrefixes

request=0 request=0
ready busy

{}U — U

Does the model satisfy the safety property?

10/17

Step 1: Transition system — automaton

11/17

{pi}

request=1
ready

. 2028

request=1
busy

request

request=0
busy

{r}

. 2028

request=1
busy

request

request=0
busy

{r}

{102}

request=1
busy

{p1:p2}

request

request=0
busy

{r}

12/17

{102}

request=1
busy

{p1:p2}

request=0
busy

12/17

{102}

request=1
busy

{p1:p2}

request=0
busy

/17
/

{102}

0

_){ request=1 tr} request=1

ready busy
{r1}
{H{rt {pr} {pip2}
4
request=0) request=0
ready busy

U N~
0 LIS

Step 2: Take a synchronous product with property automaton

13/17

trirs}

A

Bnea) (2! (e
ready busy

)

A

{3 |{r: {r}
Tequest=0 Tequest=0
el
_/
U {r} U
i} {r}

T

()

(0) {phipops}
—(%

@

{hin} @

14/17

(P12}

a

Q0
request=1 {r} request=1
ready busy

3

a

Tequest=0
ready

Tequest=0
busy

request=1, g
ready

liiiiiiiiiiﬁiill
ready

T

(@)

& {phipops}
—(%

&

{hin} {D

14/17

{popa}

request=1 (i} request=1
ready busy

{r}

{3 {r2} (n} {pvp2} &{m L P }
—(4

Tequest=0
ready

{hin} @

®

Tequest=0
busy

request=1, g
busy

request=0, g, request=0, g,
ready busy

14/17

(P12}

request=1 (i} request=1
ready busy

{r}

T
Ulte (rd| | tror) ﬁéz){pl},mm@ {hin) o)

Tequest=0
ready

t ; {2}

Tequest=0
busy

{p1}

request=1, g, tpi} request 1,9, {pi}
busy ready

(P12}

request=1 (i} request=1
ready busy

{r}

T
Ulte (rd| | tror) ﬁé{p‘},mm@ {hin) o)

Tequest=0
ready

t ; {2}

Tequest=0
busy

{p1}

request=1, g, tpi} request 1,9, {pi}
busy ready

(P12}

request=1 (i} request=1
ready busy

{r}

|t md| | teor) &{p‘ b pops }
—(%

Tequest=0
ready

{hin} 42)

®

Tequest=0
busy

{pp2 } tri}

request=1, g
busy

{p102}

request=0, g,
busy

request=1, g, tpi} request=1, g {pi} request=0, g;
busy ready busy

'iiiiiiiiiiilii'
ready

14/17

(P12}

request=1 (i} request=1
ready busy

{r}

|t md| | teor) &{p‘ b pops }
—(%

Tequest=0
ready

{hin} 42)

®

Tequest=0
busy

{pp2 } tri}

request=1, g
busy

request=1, g, tpi} request=1, g {pi} request=0, g;
busy ready busy

{p102}

request=0, g,
busy

14/17

{pvpa}

Bnea) (2! (e
ready busy

{r}
Ulie oab| | oo} (o biront ~ (hint
—(4 () '@

Tequest=0]l

Tequest=0
ready busy

request=1, g,
busy

request=1, ¢, {p1} request=1, g, to}
busy ready

{p1:p2 }

request=0, g,
busy

14/17

Step 3: Check if the language of the product automaton is empty

Step 3: Check if the language of the product automaton is empty

If language is empty, there are no bad prefixes

Step 3: Check if the language of the product automaton is empty

If language is empty, there are no bad prefixes

» Language empty — model satisfies safety property

» Language non-empty — model does not satisfy safety property

v

v

v

v

v

Step 1: Convert model to automaton
Step 2: Take synchronous product with BadPrefixes automaton

Step 3: Check if language of product is empty

Language empty — model satisfies safety property

Language non-empty — model does not satisfy safety property

16/17

17/17

Unit-4: Regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

v

>

\4

v

Summary

Introduction to automata
Simple properties of automata
Regular safety properties

Algorithm for regular safety properties

Important concepts: NFA, DFA, subset construction, synchronous product,
complementation

Unit: 4

Unit: 5,6

Unit: 7,8

Unit: 9

Unit: 10

3/3

