- 1. Let ϕ, ψ and χ be LTL formulas. We say two formulas are *equivalent*, written as $\phi \equiv \psi$ if they define the same language. For each of the following, prove or disprove the equivalences:
 - (a) $\boldsymbol{G}(\phi \wedge \psi) \equiv (\boldsymbol{G}\phi) \wedge (\boldsymbol{G}\psi)$
 - (b) $GFG\phi \equiv FGF\phi$
 - (c) $\boldsymbol{X}(\phi \boldsymbol{U}\psi) \equiv (\boldsymbol{X}\phi) \boldsymbol{U}(\boldsymbol{X}\psi)$
 - (d) $(\phi U\psi) U\chi \equiv \phi U(\psi U\chi)$
- 2. Let ϕ and ψ be LTL formulas recognizing ω -languages over an alphabet Σ . The LTL formula $\neg(\phi U\psi)$ is language equivalent to one of the following formulas. Which one is it?

For the formulas which it is not equivalent to, exhibit a word which is in the language of one but not in the other.

- i) $(\neg \phi) U(\neg \psi)$
- ii) $(\neg \psi) U(\neg \phi)$
- iii) $((\neg \psi) U(\neg \phi \land \neg \psi)) \lor G(\neg \psi)$
- iv) $((\neg \psi) U(\neg \phi \land \neg \psi)) \lor G(\neg \phi)$
- 3. Let $\Sigma = \{0, 1\}$ and let $L = \{\alpha \in \Sigma^{\omega} \mid \alpha \text{ does not contain } 01\}.$
 - (a) Give an ω -regular expression for L.
 - (b) Give an NBA for L.
- 4. Construct an NBA for the LTL formula $\neg(a U (Xb))$.
- 5. Let $\mathcal{A} = (Q, \{q_0\}, \Sigma, \delta, F)$ be an NFA for a language U. We now give a method for constructing an NBA \mathcal{B} for the language U^{ω} :
 - \mathcal{B} has the same set of states Q; and the initial state is q_0 ;
 - All transitions in \mathcal{A} are present in \mathcal{B} ;
 - In addition, for each transition $q \xrightarrow{a} q_F$ with $q_F \in F$, add a transition $q \xrightarrow{a} q_0$ in \mathcal{B}
 - Make q_0 as the only final state in \mathcal{B} .

Will the above procedure result in an NBA for U^{ω} ? If yes, give a proof. If not, give a counterexample.

6. A property (language) $L \subseteq \Sigma^{\omega}$ is said to be a *safety property* if there exists a set $P \subseteq \Sigma^*$ such that $L = \overline{P.\Sigma^{\omega}}$ (i.e. L equals complement of $P.\Sigma^{\omega}$).

For each of the following properties (which are over a suitable Σ), determine whether it is a safety property or not. Justify your answer. i) $\boldsymbol{G}(p_1 \wedge p_2)$ ii) $\boldsymbol{GF}(p_1)$ iii) $(00)^{*1\omega}$ iv) $p_1 \boldsymbol{U} p_2$

- 7. The Release operator **R** in LTL has the following semantics. A path π satisfies $\phi \mathbf{R} \psi$ if:
 - either there is some $i \ge 0$ such that π^i satisfies ϕ and for all $j = 0, \ldots, i$, we have π^j satisfies ψ ,
 - or for all $k \ge 1$, we have π^k satisfies ψ .

where π^i denotes the suffix of π starting from position *i*.

- (a) Write $G \phi$ and $F \phi$ using only R and standard boolean operators $(\neg, \lor, \land, \bot, \top)$.
- (b) Write \boldsymbol{R} in terms of \boldsymbol{U} and standard boolean operators.