Unit-10: Algorithms for CTL

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 1:

Adequate CTL formulae

Recap of CTL

State formulae

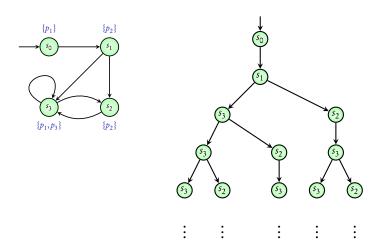
$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

$$p_i \in AP$$
 ϕ_1, ϕ_2 : State formulae α : Path formula

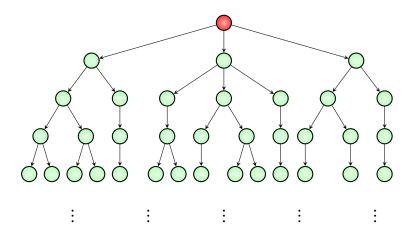
Path formulae

$$\alpha := X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

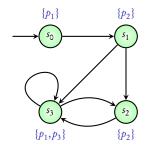
Transition system satisfies CTL state formula ϕ if its computation tree satisfies ϕ

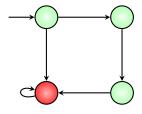


A **tree** satisfies CTL state formula ϕ if its **root** satisfies ϕ

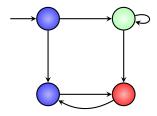


A state s in a transition system satisfies a CTL formula ϕ if the computation tree starting at s satisfies ϕ

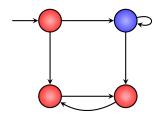




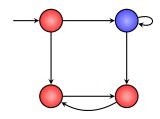
Above transition system satisfies E X red



Above transition system satisfies E blue U red



Above transition system satisfies E G red



Above transition system satisfies E G red

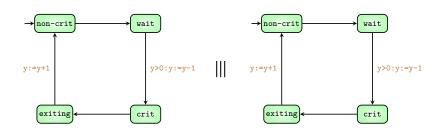
It does not satisfy A F blue

Mutual exclusion

Atomic propositions AP = { p_1, p_2, p_3, p_4 }

 p_1 : pr1.location=crit p_2 : pr1.location=wait

 p_3 : pr2.location=crit p_4 : pr2.location=wait



Above system satisfies $\mathbf{A} \mathbf{G} \neg (p_1 \land p_3)$

Goal of this unit

Design an **algorithm**:

INPUT: A transition system *M* and a CTL formula ϕ

OUTPUT: Does *M* satisfy ϕ ?

Goal of this unit

Design an algorithm:

INPUT: A transition system *M* and a CTL formula ϕ

OUTPUT: Does *M* satisfy ϕ ?

We will answer a more general question:

Given M and ϕ , find all the states of M that satisfy ϕ

First step

State formulae

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

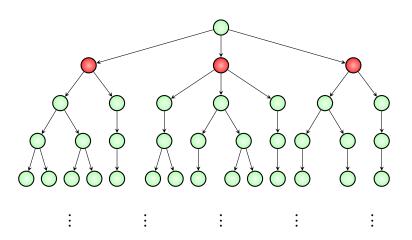
 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

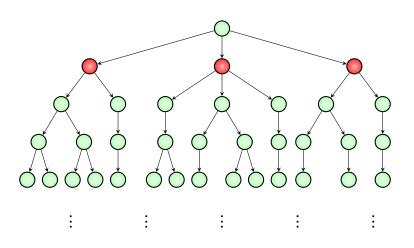
$$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 \, U \, \phi_2 \mid F \, \phi_1 \mid G \, \phi_1$$

Rewrite A in terms of E

$\mathbf{A} \mathbf{X} (red)$ equivalent to $\neg \mathbf{E} \mathbf{X} (\neg red)$



A X (red) equivalent to $\neg E X (\neg red)$



$$A X \phi \equiv \neg E X \neg \phi$$

Can we rewrite $\mathbf{A} (\phi \mathbf{U} \psi)$ as $\neg \mathbf{E} \neg (\phi \mathbf{U} \psi)$?

Can we rewrite
$$\mathbf{A} (\phi \mathbf{U} \psi)$$
 as $\neg \mathbf{E} \neg (\phi \mathbf{U} \psi)$?

No: $\neg E \neg (\phi U \psi)$ is not a CTL formula

State formulae

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Can we rewrite
$$\mathbf{A} (\phi \mathbf{U} \psi)$$
 as $\neg \mathbf{E} \neg (\phi \mathbf{U} \psi)$?

No: $\neg E \neg (\phi U \psi)$ is not a CTL formula

State formulae

$$\phi := \text{ true } \mid p_i \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid E \alpha \mid A \alpha$$

$$p_i \in AP \qquad \phi_1, \phi_2 : \text{ State formula} \qquad \alpha : \text{ Path formula}$$

Path formulae

$$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

CTL does not allow negation of path formula!

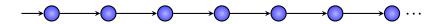
Coming next: Rewrite A U in terms of E U and E G

¬ (blue U red)

\neg (blue U red)

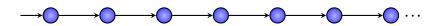
¬ (blue U red)

 $G \neg red$



$$\neg$$
 (blue U red)

 $G \neg red$



or

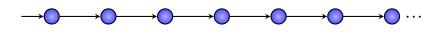
\neg (blue U red)

 $G \neg red$



or

 $G \neg red$



or
$$(\neg red) \cup (\neg blue \land \neg red)$$

 $G \neg red$

$$\longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \cdots$$

or
$$(\neg red) \cup (\neg blue \land \neg red)$$

$$\longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \cdots$$

$$\neg (\phi \mathbf{U} \psi) \equiv \mathbf{G} \neg \psi \vee (\neg \psi \mathbf{U} (\neg \phi \wedge \neg \psi))$$

$\mathbf{A} \; (\phi \; \mathbf{U} \; \psi)$

$$\mathbf{A} (\phi \mathbf{U} \psi)$$

$$\equiv$$

$$\neg \mathbf{E} \neg (\phi \mathbf{U} \psi)$$

$$\mathbf{A} (\phi \mathbf{U} \psi)$$

$$\equiv$$

$$\neg \mathbf{E} \neg (\phi \mathbf{U} \psi)$$
(Not a CTL formula)

$$\mathbf{A} (\phi \mathbf{U} \psi)$$

$$\equiv$$

$$\neg \mathbf{E} \neg (\phi \mathbf{U} \psi)$$
(Not a CTL formula)
$$\equiv$$

$$\neg (\mathbf{E} \mathbf{G} \neg \psi \lor \mathbf{E} (\neg \psi \mathbf{U} (\neg \psi \land \neg \phi)))$$

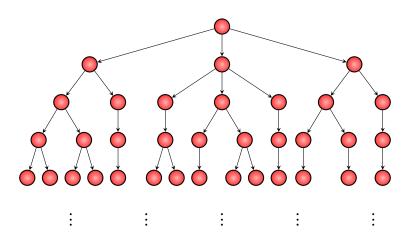
$$\mathbf{A} (\phi \mathbf{U} \psi)$$

$$\equiv$$

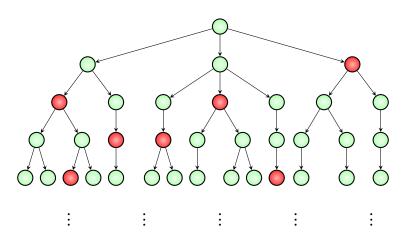
$$\neg \mathbf{E} \neg (\phi \mathbf{U} \psi)$$
(Not a CTL formula)
$$\equiv$$

$$\neg (\mathbf{E} \mathbf{G} \neg \psi \lor \mathbf{E} (\neg \psi \mathbf{U} (\neg \psi \land \neg \phi)))$$
(A CTL formula!)

A G (red) equivalent to $\neg E F (\neg red)$



A F (red) equivalent to \neg E G (\neg red)



First step

State formulae

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Rewrite A in terms of E

First step

State formulae

$$\phi := \text{true} | p_i | \phi_1 \wedge \phi_2 | \neg \phi_1 | E \alpha | A \alpha$$

 $p_i \in AP$ ϕ_1, ϕ_2 : State formulae α : Path formula

Path formulae

$$\alpha := \qquad \qquad X \phi_1 \mid \phi_1 U \phi_2 \mid F \phi_1 \mid G \phi_1$$

Rewrite A in terms of E Done!

All CTL formulas can be written in terms of EX, EU, EG and EF

All CTL formulas can be written in terms of EX, EU, EG and EF

Moreover $\mathbf{E} \mathbf{F} \phi \equiv \mathbf{E} (\text{true } \mathbf{U} \phi)$

All CTL formulas can be written in terms of EX, EU, EG and EF

Moreover
$$E F \phi \equiv E \text{ (true } U \phi \text{)}$$

E X, E U and E G are adequate to describe all CTL formulas

Existential Normal Form (ENF) for CTL

State formulae

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi \ | \ EX\phi \ | \ E(\phi_1 \ U \ \phi_2) \ | \ EG\phi$$

$$p_i \in AP \qquad \qquad \phi, \phi_1, \phi_2 : \text{State formulae}$$

Existential Normal Form (ENF) for CTL

State formulae

$$\phi := \text{ true } | \ p_i \ | \ \phi_1 \land \phi_2 \ | \ \neg \phi \ | \ EX\phi \ | \ E(\phi_1 \ U \ \phi_2) \ | \ EG\phi$$

$$p_i \in AP \qquad \qquad \phi, \phi_1, \phi_2 : \text{State formulae}$$

Theorem

For every CTL formula there exists an equivalent CTL formula in ENF