1. Consider the following problem.

Maximize	$10x_1$	+	$24x_2$	+	$20x_{3}$	+	$20x_4$	+	$25x_{5}$		
Subject to	x_1	+	x_2	+	$2x_3$	+	$3x_4$	+	$5x_5$	≤ 19	(C1)
	$2x_1$	+	$4x_2$	+	$3x_3$	+	$2x_4$	+	x_5	≤ 57	(C2)
	$x_1,$		$x_2,$		$x_3,$		$x_4,$		x_5	≥ 0	

- (a) Write its dual with two variables w_1, w_2 (corresponding to the constraints (C1) and (C2)) and verify that $(w_1, w_2) = (4, 5)$ is a feasible solution.
- (b) Use complementary slackness to show that $(w_1, w_2) = (4, 5)$ gives the optimal solution to the dual.
- 2. Consider the following problem:

subject to $x_1 - 2x_2 \leq x_1$	$^{-1}$
$4x_1 + 3x_2 \leq$	4
$-x_1 + 2x_2 \leq$	3
$2x_1 - x_2 \leq$	-4

Verify, using complementary slackness, whether $x_1 = -3, x_2 = -1$ is optimal. Verify using complementary slackness whether $x_1 = -\frac{5}{3}, x_2 = \frac{2}{3}$ is optimal.

- 3. Suppose we allow negative edge weights in the shortest paths problem discussed in class. Prove that the following conditions are equivalent:
 - (a) There is a shortest path from s to t.
 - (b) The dual LP is feasible.
 - (c) There is no cycle with negative total cost.
- 4. Here is the set cover problem:
 - **Input.** A universe D consisting of finite number of elements, and a family S_1, S_2, \ldots, S_m of sets, with each $S_i \subseteq D$. Assume that $\bigcup_{i \in \{1,\ldots,m\}} S_i = D$.

Goal. Find minimum size subset $W \subseteq \{1, \ldots, m\}$ such that $\bigcup_{i \in W} S_i = D$

- (a) Write an ILP for the set cover problem.
- (b) Give the relaxed LP and its dual.
- (c) Assume that each element of D occurs in at most f sets among S_1, \ldots, S_m . Design a primal-dual algorithm which gives an f-approximation: that is, the answer given by the algorithm is at most f times the optimal solution.

Describe the algorithm and its analysis.