1. Solve the following LPs using the simplex method

(a)

	Maximize	x_1	_	$2x_2$	+	x_3	
	Subject to	x_1	+	$2x_2$	+	x_3	≤ 12
		$2x_1$	+	x_2	_	x_3	≤ 6
		$-x_1$	+	$3x_2$			≤ 9
		$x_1,$		$x_2,$		x_3 ,	≥ 0
(b)							
	Maxim	ize	$3x_1$	+	$5x_2$		
	Subjec	t to	x_1	_	$2x_2$	≤ 6	
			x_1			≤ 10)
					x_2	≥ 1	
			$x_1,$		$x_2,$	≥ 0	

- 2. Provide an algorithm based on the simplex method to check if a given system of inequalities is feasible.
- 3. Can a variable which just left the basis in a simplex tableau reenter in the very next pivot? Explain your answer.
- 4. Give an example of A, c, b such that the following two LPs are unbounded:
 - maximize $c^T x$ subject to $Ax = b, x \ge 0$
 - maximize $-c^T x$ subject to $Ax = b, x \ge 0$

The only difference in the two LPs is in the objective function.

5. Write an LP for the following problem:

minimize $x_1 + 2|x_2| + 3|x_3 - 10|$ subject to $|x_1| + |x_2 + x_3| \le 10$

Justify your answer: show why the optimum value of the LP you write is equal to the optimum value of the above problem.