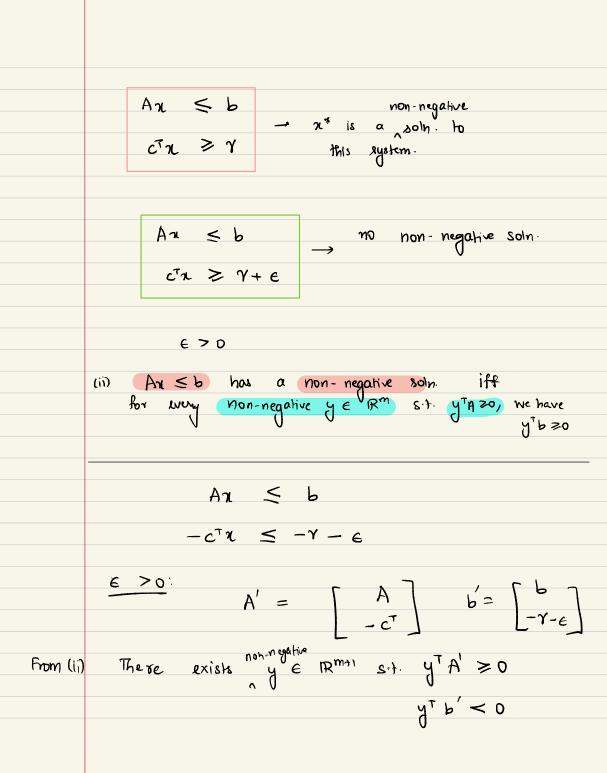


PROOF OF DUALITY VIA FARKAS' LEMMA REFERENCE: Sections 6.4 & 6.7 Q text: Understanding and Using Linear Programming - Matoušek & Gärtner FARKAS' LEMMA: Let A be an $m \times n$ real matrix and let $b \in \mathbb{R}^m$. Then exactly one of the following holds: 1. There is a solution to Ax = b, $x \ge 0$. 2. There is a $y \in \mathbb{R}^m$ s.t. $y^T A \ge 0$ and $y^T b < 0$. $A_{\mathcal{X}} = b$ has a non-negative solution iff for every $y \in \mathbb{R}^m$ s.t. $y^T A \ge 0$, we have $y^T b \ge 0$

VARIANT OF FARKAS' LEMMA: Zet A be an mxn real matrix, let be R^m. (i) Az = b has a non-negative soly. iff for every y ∈ R^m s.+. yTA ≥0, we have yib ≥0. (ii) An ≤ b has a non-negative soln. iff
for wery non-negative y ∈ R^m s.t. y^TA ≥0, we have
y^Tb ≥0
(iii) An ≤ b has a soln. iff
for every non-negative y ∈ R^m s.tr y^TA =0, we have
y^Tb ≥0 y76 ≥0 Exercises Prove that (1), (11), (11) are equivalent.

PROOF OF DUALITY: Dual (D): Primal: (P) minimize b^ry maximize $c^{T} \chi$ Ky ≥ C y ≈0 An 56 n 20 <u>Strong</u> <u>duality</u>: If (P) has an optimum, then (D) is flavible, has an optimum, and the optimal costs wincide. Suppose (P) has optimum at $x^* \in \mathbb{R}^n$. $\det \gamma = c^{T} x^{*}$ Consider the system: An sb -> x* is a soln. to this system. $c^{T}n \ge \gamma$



$$A_{T} \leq b$$

$$-c^{T}x \leq -Y - 6$$

$$\frac{\epsilon \geq 0}{A'} = \begin{bmatrix} A \\ -c^{T} \end{bmatrix} = \begin{bmatrix} b \\ -r^{T} \end{bmatrix}$$
From (i)
$$The re exists = \begin{bmatrix} non & ny \\ non & ny \\ non & ny \\ e \end{bmatrix} = \begin{bmatrix} a \\ -c^{T} \end{bmatrix} = \begin{bmatrix} b \\ -r^{T} \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ y \\ y \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ y \\ y \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ y \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ y \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ y \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ y \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ y \\ z \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ a \\ z \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ a \\ z \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ a \\ z \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ a \\ z \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ a \\ z \\ z \\ z \end{bmatrix}$$

$$y^{T} = \begin{bmatrix} a \\ a \\ z \\ z \\ z \end{bmatrix}$$

$$b' = \begin{bmatrix} b \\ -7 - e \end{bmatrix}$$

$$[u_{1} \dots u_{m} \ Z] \begin{bmatrix} b \\ -7 - e \end{bmatrix} < 0$$

$$u_{1} \ b_{1} + \dots + u_{m} \ b_{m} \ < X(Y + e)$$

$$b^{T} u \ < X(Y + e) \longrightarrow (*)$$

$$\rightarrow u^{T} A \ge ZC$$
From 'u' We want to generate a feasible soluries to the dual (D).
Natural Option would be to contriden $\frac{u}{Z}$. But we can do this only when $X > 0$. We will prove that $X > 0$.

Ar
$$\leq b$$
 $(e=0)$
 $-c^{T}r \leq -r$
This has a soln. \therefore from (ii),
since $[u_{1}..., u_{m} \ge 2)[A] \ge 0$,
 $[-c]$
We should have:
 $[u_{1}..., u_{m} \ge 2][b] \ge 0$
 $[-r]$
 $b^{T}u \ge rr$ (\ddagger)
From (\ddagger) and (\ddagger) ≥ 20 (otherwise
(\ddagger) says $b^{T}u \ge 0$,
 (\ddagger) says $b^{T}u \ge 0$,

Coming back to:

$$b^{T}u < \chi(\gamma + \epsilon)$$

$$u^{T}A \geqslant Zc$$

$$V = \frac{1}{\chi} u$$

$$K|e have: b^{T}V < \gamma + \epsilon$$

$$V^{T}A \geqslant c$$

$$\therefore V \text{ is a feasible soln: to the dual.}$$
Moreover γ has cost < $\gamma + \epsilon$.
From weak duality, $cost (v) = b^{T}v \geqslant \gamma$.

$$\gamma \leq b^{T}v < \gamma + \epsilon \qquad (*)$$

$$\Rightarrow Since (D) \text{ is feasible and bounded, there ensists a dual soln. with cost between $[r, r+\epsilon]$$$

60 Suppose dual optimum is some γ_{D} with $\gamma < \gamma_{D}$, thun we can find an ϵ_{D} structure exists a dual volume with cost in $[\gamma, \gamma + \epsilon_{D}) < \gamma_{D}$. - This is a contradiction. - Honce, (D) optimum equals Y,

PROOF OF FARKAS' LEMMA:
(111) Ar
$$\leq b$$
 has a solow. iff
for subout mon-negative $g \in \mathbb{R}^{m}$ sit $g^{TH} = 0$, we have
 $g^{Tb} \geq 0$
Proof: (=>) suppore \overline{x} is a solow. to $\lambda a \leq b$.
Prick some g sit. $g^{T}A = 0$
 $A\overline{x} \leq b$
 $g^{T}A \ \overline{x} \leq g^{T}b$
 $0 \leq g^{T}b$
(=>) is not immediale.
FOURIER- MOTZKIN METHOD:
 $5\overline{x} + ay + 2\overline{z} \leq 15$
 $2\overline{x} + 2\overline{y} - 3\overline{z} \leq 10$
 $-\overline{z} + g + 4\overline{z} \leq 20$
 \int
Greet a system with 'y' and 'z' sit.
Driginal system has a solow. iff. the new system
has a solow.

With a single vor:
$$\chi \leq 4$$
 $\int \Rightarrow z \leq 4$
 $z \leq 5$
 $-z \leq 2$ $\chi \Rightarrow -z = 2$
 $-z \leq -1$
Now: when there are multiple variable:
 $5\chi + ay + 2z \leq 15$
 $2\chi + 2y - 3z \leq 10$
 $-z + y + 4z \leq 20$
 $-z + y + 4z \leq 20$
 $-z + 2y - 2z \leq 15$
 $\chi \leq 15$
 $\chi \leq 15$
 $\chi \leq 15$
 $\chi \leq 10$ $-2y - 3z$
 $z = 10$
 $-\chi \leq 20$ $-y - 4z$
 $\chi \geq -20$ $+y$ $+4z$
 $\chi \geq -20$ $+y$ $-2z$

We will genuck a system which declares that:

$$max(lower bounde of x) \leq min (upper bounds for x)$$

$$x \leq \frac{15}{5} - \frac{4y}{5} - \frac{2x}{5} - \frac{15}{5} - \frac{4y}{5} - \frac{2x}{5}$$

$$x \leq \frac{10}{2} - \frac{2y}{2} - \frac{3z}{2} - \frac{10}{2}$$

$$x \geq -20 + y + 4z \qquad give lower
bounds.$$

$$x \geq -15 + \frac{2y}{5} - \frac{2x}{5} - \frac{4y}{5} - \frac{2x}{5}$$

$$-20 + y + 4z \leq \frac{15}{5} - \frac{4y}{5} - \frac{2x}{5}$$

$$-20 + y + 4z \leq \frac{15}{5} - \frac{4y}{2} - \frac{2x}{5}$$

$$-15 + \frac{2y}{2} - \frac{2z}{5} - \frac{4y}{5} - \frac{2x}{5}$$

$$-15 + \frac{2y}{2} - \frac{2z}{5} = \frac{15}{5} - \frac{4y}{5} - \frac{2x}{5}$$

$$-15 + \frac{2y}{2} - \frac{2z}{5} = \frac{15}{5} - \frac{4y}{5} - \frac{2x}{5}$$

$$-15 + \frac{2y}{2} - \frac{2z}{5} = \frac{15}{5} - \frac{4y}{5} - \frac{2x}{5}$$

$$-15 + \frac{2y}{2} - \frac{2z}{5} = \frac{15}{5} - \frac{4y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{2} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5}$$

$$-15 + \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2y}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2z}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{2z}{5} - \frac{2z}{5} = \frac{15}{5} - \frac{15}{5} - \frac{2z}{5} = \frac{15}{5} - \frac$$