- 1. Prove or disprove the following statement: if the primal has a unique optimum, then the dual has a unique optimum (an LP is said to have a unique optimum if there is exactly one feasible solution giving the optimum value).
- 2. Consider the following problem.

Maximize $10x_1 + 24x_2 +$ $20x_3 +$ $20x_4 +$ $25x_{5}$ Subject to x_1 ++ $2x_3$ + $3x_4$ + $5x_5$ ≤ 19 (C1) x_2 $2x_1$ + $4x_2$ + $3x_3$ $+ 2x_4$ + x_5 ≤ 57 (C2) ≥ 0 x_1 , x_2 , x_3 , x_4 , x_5

- (a) Write its dual with two variables w_1, w_2 (corresponding to the constraints (C1) and (C2)) and verify that $(w_1, w_2) = (4, 5)$ is a feasible solution.
- (b) Use complementary slackness to show that $(w_1, w_2) = (4, 5)$ gives the optimal solution to the dual.
- 3. Consider the following problem:

Maximize
$$9x_1 + 8x_2$$

subject to $x_1 - 2x_2 \le -1$
 $4x_1 + 3x_2 \le 4$
 $-x_1 + 2x_2 \le 3$
 $2x_1 - x_2 \le -4$

Verify, using complementary slackness, whether $x_1 = -3, x_2 = -1$ is optimal. Verify using complementary slackness whether $x_1 = -\frac{5}{3}, x_2 = \frac{2}{3}$ is optimal.