1. Solve the following LPs using the simplex method

(a)

	Maximize	x_1	—	$2x_2$	+	x_3	
	Subject to	x_1	+	$2x_2$	+	x_3	≤ 12
		$2x_1$	+	x_2	_	x_3	≤ 6
		$-x_1$	+	$3x_2$			≤ 9
		$x_1,$		$x_2,$		x_3 ,	≥ 0
(b)	Maxim Subject	ize t to	$3x_1 \\ x_1 \\ x_1 \\ x_1 \\ x_1,$	+ -	$5x_2 \\ 2x_2 \\ x_2 \\ x_2 \\ x_2,$	≤ 6 ≤ 10 ≥ 1 ≥ 0	; 0 -

- 2. Provide an algorithm based on the simplex method to check if a given system of inequalities is feasible.
- 3. An LP in general form is given as: maximize $c^T x$ subject to $Ax \leq b$ where A is an $m \times n$ matrix, c and x are $n \times 1$, and b is $m \times 1$. Each constraint $A_i x \leq b_i$ is a half-space defined using the hyperplane $A_i x = b_i$. The general form LP is said to be degenerate if the feasible region contains a point obtained as an intersection of more than n hyperplanes.

An LP in equational form is given as: maximize $c^T x$ subject to Ax = b, $x \ge 0$. Equational form LP is degenerate if there are several feasible bases corresponding to a single basic feasible solution.

(a) Convert the following general form LP to equational form.

Maximize	$5x_1$	—	x_2	+	$2x_3$	
Subject to	x_1	—	$6x_2$	+	x_3	≤ 2
	$5x_1$	+	$7x_2$	—	$2x_3$	≤ -4
	$8x_1$	_	$10x_{2}$	+	$19x_{3}$	≤ 75
			$5x_2$	+	$14x_3$	≤ 30

(b) Convert the following equational form LP to general form.

Maximize	$2x_1$	_	$3x_2$	+	$4x_3$	
Subject to	$-x_1$	+	$2x_2$	_	x_3	= 14
	$5x_1$	_	$6x_2$	+	$12x_{3}$	= 20
	x_1	,	x_2	,	x_3	≥ 0

- (c) Show that if a general form LP is degenerate, then the corresponding equational form LP is also degenerate.
- (d) Show that if an equational form LP is degenerate, then the corresponding general form LP is also degenerate.
- 4. Suppose in an instance of LP, we have n variables that are unconstrained in sign. Show how they can be replaced by n + 1 variables that are constrained to be non-negative.
- 5. Write the duals for the following LPs:

•

•

•

```
Maximize
             2x_1 - 12x_2 +
                                  20x_{3}
                                  25x_3
Subject to 6x_1
                  +
                       9x_2
                              +
                                         \leq 25
             2x_1 - 
                                         = 15
                       6x_2
                              +
                                  3x_3
             4x_1 +
                       7x_2
                                  20x_{3}
                                         \geq 4
                              _
                                         \geq 0
                                   x_1
                                         \leq 0
                                   x_2
                                   x_3
                                         unrestricted
                  8x_1 + 3x_2 - 2x_3
    Maximize
    Subject to
                  x_1 - 6x_2 + x_3
                                            \geq 2
                  5x_1 + 7x_2 -
                                      2x_3 = -4
                                      x_1
                                            \leq 0
                                            \geq 0
                                      x_2
             -2x_1 + 3x_2 + 5x_3
Minimize
Subject to
             -2x_1 +
                             +
                                        \geq 5
                         x_2
                                   3x_3
              2x_1
                                        \leq 4
                              +
                                   x_3
                         2x_2 +
                                        = 4
                                   x_3
                                        \leq 0
                                   x_1
                                        \geq 0
                                   x_2
                                         unrestricted
                                   x_3
```

- 6. Give an example of a primal-dual pair such that both are infeasible.
- 7. Take primal to be maximize $c^T x$ subject to Ax = b. The dual is then to minimize $b^T y$ subject to $A^T y = c$. Show that for every feasible solution \overline{x} of primal and every feasible solution \overline{y} of dual, we have $c^T \overline{x} = b^T \overline{y}$.